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Abstract

Biological fluids such as blood accomplish many vital tasks in the human
body, including carrying oxygen and nutrients to tissues, regulating internal
temperature and pH, or transporting white blood cells to infected areas. A
better understanding of these fluids can provide insight into many patholo-
gies such as the formation of aneurysms and the effect of sickle cell disease
on the flow of red blood cells, as well as help design efficient diagnosis tools
on microfluidic devices. Such fluids are composed of a continuous viscous
phase and suspended bodies, including rigid particles and deformable mem-
branes enclosing an inner fluid, referred to as capsules. In this thesis, we
develop numerical tools aiming to simulate cell-resolved biological fluids such
as blood. In a first part, we focus on the dispersed solid phase, a field known
as granular mechanics. In this context, we implement a contact force able
to accurately model static assemblies of granular media. After extensive
validation, we use this contact model in a purely granular setting to study
avalanches of entangled particles. Our numerical results are compared to
experiments and show very good qualitative and quantitative agreement.
Moreover, we present a variety of novel avalanching behaviors, as well as an
intermittent regime in which reproducibility is lost. After analyzing the mi-
crostructure of granular assemblies in this regime, we conclude that it likely
arises from mesoscale clusters of particles. In a second part, we concen-
trate on flowing biological capsules. We develop an adaptive front-tracking
method which enables simulations of capsules in very large geometries for a
wide range of Reynolds number. We validate our solver extensively and we
show excellent qualitative and quantitative agreement with the literature.
We then study the dynamics of capsules flowing through a sharp corner, a
commonly encountered geometry in microfluidic devices. We analyze the
trajectory, normalized velocity and area variations of the capsules and we
show that in our case of strong confinement, the capsules interact weakly
unless they are located very close to each other. Finally, we present and
implement a fully Eulerian alternative method to simulate flowing capsules,
and we highlight its advantages and limits.
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Lay Summary

Computer simulations are an indispensable tool to understand and predict
the behavior of many complex natural and industrial processes. In partic-
ular, complex flows such as rockfalls or flowing blood through microcircu-
lation rely heavily on numerical tools as they are described by equations
mathematicians cannot solve by hand. In this thesis, we develop improved
numerical methods in order to simulate such complex flows. We first focus
on granular flows composed of entangled particles. We study their complex
intrication behavior as a step forward in the modeling of complex granular
media, which are very common in industrial processes. Then we develop
an efficient method to simulate highly deformable biological cells such as
red blood cells. This method allows us to study the behavior of deformable
cells in large and complex geometries, and therefore constitutes a valuable
tool for biologists developing lab-on-chip devices used for instance to provide
cheap and fast diagnoses.
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Chapter 1

Introduction

Blood is the main carrier of material within the human body, therefore
accomplishing many vital tasks. To name a few, the vascular network is
responsible for delivering oxygen and nutrients to tissues, transporting hu-
moral and cellular immune response agents to infected areas, stabilizing the
temperature and pH of the body, as well as carrying hormones to all compo-
nents of the endocrine system, thereby controlling the body’s metabolism,
growth, mood, emotions, sexual function, sleep and blood pressure [74]. As
a result, any factor altering properties of the vascular network can have
striking consequences: for instance, the formation of an abnormal buldge
in the wall of a blood vessel, called an aneurysm, can burst and result in
internal bleeding, often leading to death [178]. In oncology, the vascular
network is also the main vector of migration of cancerous cells − those cells
are referred to as Circulating Tumor Cells (CTCs) −, which can lead to
metastases [5, 161, 162]. Because blood is critical in such a vast range of
bodily functions, efforts to better model and characterize blood flow can
have dramatic impacts in a wide range of medicinal applications. For ex-
ample, a finer understanding of cell-wall adhesion in blood vessels can help
design targeted drug delivery applications, which could dramatically reduce
the side effects of heavy cancer treatments such as chemotherapy [11, 113].
Another field of hemodynamics − the study of blood flow − under active
research is that of lab-on-chip devices. These microfluidic devices have a
carefully engineered geometry in order to accomplish various tasks, such
as skimming blood plasma and sorting cells based on size or deformabil-
ity; and they have already enabled fast and inexpensive cell-segregation and
cell-characterization procedures [22, 52, 55, 96, 192].

Blood is a complex fluid: its microscopic structure is composed of the
blood plasma (57%1) laden with Red Blood Cells (RBCs) (about 42%) and
other suspended cells such as white blood cells and platelets (about 1%)
[74]. While a wide variety of proteins are suspended in the blood plasma,
it is not a strong assumption to model it as a Newtonian fluid of viscosity

1The percentages indicate volume fractions.
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Chapter 1. Introduction

Figure 1.1: A red blood cell (left), an activated platelet (center) and a white blood cell
(right) as seen using electron microscopy imaging [10].

µp = 1.2mPa · s at 37oC, about 50% greater than that of water at the
same temparature [74, 107]. RBCs are highly deformable cells and can
be modelled as capsules, i.e. a deformable, elastic membrane enclosing an
inner fluid [19]. In the case of RBCs, the inner fluid is the hemoglobin-
rich cytoplasm: RBCs are red because the iron present in the hemoglobin
molecule is oxidized when the blood is rich in oxygen. At rest, a typical
RBC adopts a biconcave shape with a largest diameter of about 7.8µm
[160]. White blood cells and platelets are stiffer and can be modelled as solid
particles: a sphere in the case of white blood cells and an oblate spheroid
in the case of inactivated platelets. The diameter of a typical white blood
cell is approximately 80% of the greatest diameter of an RBC, and that of
a typical inactivated platelet is approximately 20% of the greatest diameter
of an RBC. A size and shape comparison of an RBC, a white blood cell and
a platelet (activated) is shown in figure 1.1.

While blood flow research was historically driven by experiments, the
rapidly rising computing power enabled the first mesoscale three-dimensional
simulations of blood flow in 2010 [219]. Undeniably, the major advantage
of numerical simulations of biological flows over experiments is the ability
to produce cheap, on-demand, and reproducible studies. Indeed, blood is
difficult to study experimentally for a number of practical reasons. First,
blood can contain viruses and diseases and experiment in hemodynamics
must follow a strict biohazard procedure. Moreover, a pure blood sample
must usually be used within a few hours from its collection from a donor
due to several factors ranging from coagulation to the natural degradation
of cells [210], thus adding to the logistic constraints of hemodynamics exper-
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Interaction type

A
fluid-complex
boundary

B fluid-membrane

C fluid-moving solid

D
moving solid-
moving solid

E
moving solid-
complex boundary

F
membrane-
complex boundary

G
membrane-
membrane

H membrane-solid

Figure 1.2: Diagram listing the types of interactions in a typical blood sample. The
highlighted rows in the table show the interactions actively inverstigated in the present
thesis. For readability, the volume fraction of the blood composition is not respected.

iments. Second, blood composition varies from donor to donor: for instance,
the hematocrit − i.e. the volume fraction of RBCs − we indicate above is
an average value. In reality, healthy hematocrit levels vary from 41% to
50% in men, and from 36% to 44% in women [135]. Carrying reproducible
experiments with such variations of the fluid properties from donor to donor
can become a challenging task. As a result, the cost of conducting an exper-
imental study on human blood is in most cases orders of magnitude greater
than the cost of renting computing power on a cloud system to carry out the
same study numerically. Moreover, numerical simulations allow to investi-
gate quantities that are not accessible to the experimentalist, because the
complete three-dimensional flow and force fields are known. This is useful
for example if the strains and stresses in the cell membranes are of interest,
e.g. to characterize the influence of a channel geometry on the breakabil-
ity of the cells. For all these reasons, numerical simulations have become
increasingly popular in the study of biological fluid flows, especially in ap-
plications involving iterative designs such as microfluidic devices, in which
the shape of the microchannels is optimized to accomplish a given task.

The goal of the present thesis is to develop numerical tools capable of
simulating biological fluids such as blood at the cellular scale. At this scale,
all combinations of interactions between fluid, deformable membranes, solid
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1.1. Numerical modelling of the solid phase

particles and complex channel geometries need to be considered, as repre-
sented in figure 1.2. In part I of this thesis, including Chapters 2 and 3, we
focus on the dispersed solid phase and employ the Discrete Element Method
(DEM). In the context of figure 1.2, we model interaction D in the very
general context of particles of arbitrary shapes. In part II of this thesis,
including Chapters 4, 5 and 6, we focus on the simulations of deformable
cells and employ a Front-Tracking Method (FTM) on adaptive grids. The
FTM models interaction B of figure 1.2, while our adaptive mesh captures
the small lubrication layers around deformable membranes, thus treating in-
teractions F and G. The interactions listed in figure 1.2 that are not treated
in this thesis are either: (i) well known in the literature and already im-
plemented in our flow solver − namely interactions A and C; or (ii) under
current investigation by a group member [139] − namely interactions E
and H. Chapter 7 contains a discussion related to parts I and II as well
as concluding remarks. In the following two sections, we present a general
overview of the context, motivations and significance associated with the
two themes of this thesis, while a considerably more in-depth description of
the conducted research will be presented in the main body of this document.

Finally, the research conducted in this thesis adheres to high standards
of reproducibility and open-source development practices: in part I we take
great care to describe extensively our numerical setup, and in particular we
list all of the contact model parameters that our solver requires. Moreover
our DEM solver will soon be released open-source for everyone to browse
and use. In part II, we contribute to an existing open-source software and
release our code on the software’s website together with an extensive docu-
mentation. Additionally, the input files and post-processing scripts to run
every simulation and reproduce every figure presented in part II are also
released openly [80].

1.1 Numerical modelling of the solid phase

In the first part of this thesis, we focus on numerical simulations of a dis-
persed solid phase. While our initial motivation is to study flowing and
colliding white blood cells and platelets, which are approximately rigid bod-
ies, our problem can be generalized to all materials made of dispersed solid
particles. Consequently we abstract our original problem and we choose to
focus on the more general field of granular mechanics. Surprisingly, granu-
lar media are far from being well understood despite being the second-most
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handled material in industry2. While major efforts were undertaken in the
past two centuries to describe the behavior of granular media, we still cannot
predict with certainty if a cup a rice poured into a funnel will jam or see its
flow rate undisturbed; nor can we predict the value of the angle of repose
of a pile of particles which shape deviates from the sphere. Still, several ap-
proaches can be used to describe granular media and gain insight into their
macroscopic properties. If the system of interest is very large, comprising
over 106 particles, a continuum approach can be used. In this approach,
experimental data is gathered and analyzed at a macroscopic level, with
the goal to model the relation between the strain applied to the granular
material and the resulting stress. In the early 2000s, GDR MiDi, a group of
researchers, conducted and analyzed a wide range of experiments and postu-
lated the µ(I)-rheology phenomenological law, which expresses the viscosity
µ of the granular fluid as a function of an inertial number I relating the
time scale of microscopic rearrangements and the time scale of macroscopic
deformations [56, 117]. This µ(I)-rheology law allows to formulate a stress-
strain relation for the granular material and to find an approximate solution
using Navier-Stokes solvers, effectively treating the granular material as a
non-Newtonian fluid. Despite being a giant leap forward in the modelling
of granular flows, the µ(I)-rheology approach is limited to very big granu-
lar systems composed of monodispersed spheres. If another type of granular
material is of interest, costly and time-consuming experiments would need to
be performed for this specific type of material before a new µ(I)-rheological
law can be developped and applied only to very big systems. As a result,
concomitant to the advances of the continuum approach, numerical methods
were developped in order to address smaller systems of particles for which an
averaging approximation is not feasible. The most versatile of these numeri-
cal methods is the Discrete Elements Method (DEM), in which the dynamics
of each individual particle is resolved using Newton’s second law of motion.
High-performance DEM codes can represent at most 108 spherical particles,
making this approach irrelevant for very large granular systems featuring
hundreds of billions of particles, but suitable for the biological applications
we are interested in, which could comprise at most a few hundereds to a few
thousands platelets and white blood cells. Moreover the collisions between
individual particles need to be resolved in time: because the contact dura-
tion is very short for most materials, the time steps employed in DEM are
very small and these simulations are limited to small physical time scales.
This restriction is compatible with the simulations of cell-resolved biological

2The most handled material in industry is water [102].
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flows, as the time scale of interest is at most of the order of seconds. At
the core of the DEM is the contact model, which dictates the force exerted
on two colliding particles. In most DEM programs, a simple contact model
valid for fast collisions is used. However, whenever long-duration contacts
occur, a better contact model with a so-called “memory” term that keeps
track of the cumulative tangential displacement at the contact point is nec-
essary in order to accurately simulate frictional static granular assemblies.
Moreover, the vast majority of DEM software can only represent particles of
spherical or spheroidal shapes, while in practice most granular materials are
made of particles of arbitrary shape, often non-convex and featuring sharp
edges. In the first part of this thesis, we implement an accurate contact law
in a DEM software, and we proceed to using this accurate numerical method
to analyze granular systems composed of non-convex, entangled particles.

In Chapter 2, we focus on the implementation and the validation of
the new contact model in the open-source software Grains3D. We begin by
presenting an overview of the DEM, of the more accurate contact model
with memory that we implement, and of the various integration schemes
that are relevant in the context of the DEM. We note that in DEM contact
models, some model parameters are difficult to estimate. As such, we review
the literature on this topic and we provide a procedure to set contact model
parameters in a rigorous fashion. Then, we proceed with the validation of
our DEM solver through a series of test cases. The first validation case is
a simple sphere bouncing on a horizontal plane. It aims to demonstrate a
degenerescence to first order in the accuracy of any DEM time integration
scheme, which is rarely discussed. The second validation case is a measure of
the average velocity of a pile of spherical particles confined in a box. This test
demonstrates that the memory contact model allows the granular assembly
to reach a true static case, in which the translational and angular velocities
of the particles approach the machine epsilon. Our third validation case is a
quantitative validation of macroscopic predictions. In this case, we consider
a hopper discharge of particles forming a conic pile on a flat surface, and
we compare the repose angle of the pile to that obtained in the literature.
Finally, concluding remarks and perspectives are formulated.

With a validated DEM solver able to represent static and dynamic as-
semblies of particles of arbitrary shapes, we proceed to Chapter 3, where
granular avalanches of entangled particles are analyzed. Our goal is to show
the dramatic effect of the particle shape on the overall dynamics of a granu-
lar assembly. As such, we choose cross-shaped particles in order to enhance
the entanglement of our granular medium, and we consider a dam-break
setup with a varying aspect ratio, in which a confined granular column is
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1.2. Numerical modelling of immersed deformable capsules

released by removing one of the lateral walls. We compare our simulations
to experiments conducted by collaborators at the University of Twente, and
we show excellent qualitative and quantitative agreements between the nu-
merical data and the experimental data. Qualitatively, very interesting and
novel collapsing dynamics are observed, resulting from the entanglement of
the particles. Such behaviors include the top-driven collapse, the buckling
collapse, and the metastable regime in which the granular column collapses
or remains stable in a non-deterministic way. Quantitatively, the runout
distance and the height of the granular column are measured and show sur-
prisingly similar trends to that observed in the case of dam-break setups of
spherical particles. Our simulation data allows us to access quantities that
are not measurable experimentally, and we proceed to analyze the force con-
tact network, the fabric anisotropy and the probability density functions of
contact forces, in an attempt to better characterize the metastable regime.
We found that none of these measures allows to fully determine whether a
metastable assembly will collapse or remain stable after the gate is removed,
suggesting that the macroscopic outcome of the entangled granular medium
we consider is determined at the mesoscale. Unfortunately, we also found
that when the particle shape significantly deviates from that of a sphere, the
rigorous procedure presented in Chapter 2 to set the DEM contact model
parameters is not valid. As such, we had to rely on trial and error to set
our contact model parameters, which is undoubtedly a major limitation of
the DEM.

1.2 Numerical modelling of immersed deformable
capsules

The second part of this thesis is devoted to the numerical simulations of flows
laden with deformable capsules. Such flows display a complex behavior: for
instance, experiments show that human blood displays a non-Newtonian
behavior when observed at the macroscale; even though the fluids inside
and outside the RBCs are both Newtonian at the microscale. The non-
Newtonian, shear-thinning, macroscopic behavior of blood is the result of
the anisotropy of the RBCs, which tend to adopt random orientations at
low shear rates while aligning their longest axis with the flow streamlines
at high shear rates, thus resulting in a nonlinear relation between the sam-
ple viscosity and the applied shear rate. In light of this observation, if the
physical scale of the problem is much larger than the scale of a capsule, mod-
elling blood − or more generally, capsule-laden flows − using a single-phase,
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non-Newtonian fluid is a valid approach that has been applied successfully
in the case of blood flow simulations [98, 138]. If the problem of interest
involves features of size less than two orders of magnitude greater than that
of a capsule, such as microchannels in lab-on-chip devices, then the effect of
the capsules cannot be averaged and a non-Newtonian single-phase fluid de-
scription is not appropriate. In this case, the two-phase description of blood
as a capsule-laden fluid has to be adopted, as sketched in figure 1.2. In
non-inertial regimes, found in small capillary vessels or in some non-inertial
microfluidic devices, the Navier-Stokes equations describing the inner and
outer fluids become the linear Stokes equations, and a Boundary Integral
Method (BIM) can be used to simulate such flows. In this method, only
the boundaries of the fluid domains need to be discretized − i.e. the cap-
sule membrane and the walls of the blood vessel or of the microchannel −,
making this approach very computationally efficient even for large, three-
dimensional problems featuring thousands of capsules. However, these fast
BIM solvers cannot be applied to inertial regimes: when higher velocities
are considered, the full nonlinear Navier-Stokes equations need to be solved,
and the whole 3D space must be discretized. This approach has been suc-
cessfully employed to simulate inertial and non-inertial capsule laden-flows,
both in microfluidic-relevant geometries [15, 129] and in geometries resem-
bling networks of capillary vessels [7, 16]. In both cases, the relevant size
of the problem is much greater than the size of a given capsule, while the
dynamics of the flow is determined by the boundary layers along the capsule
membranes and the walls. As a result, very fine grid discretizations have to
be employed in order to capture the physics that happens in the boundary
layers. Because of ease of programming and of designing numerical meth-
ods, most Navier-Stokes flow solvers utilize a constant (and often uniform)
Cartesian grid in the whole simulation domain, resulting in a fine discretiza-
tion everywhere − even in areas far away from capsules and walls. This is
a sub-optimal usage of computational resources. In part II of this thesis,
we implement an adaptive capsule-laden flow solver suitable for inertial and
non-inertial regimes, and able to coarsen the grid discretization in regions
where high computational accuracy is not needed, enabling our solver to be
applied to much larger geometries than its constant grid-size counterparts.

In Chapter 4, we focus on the implementation of our adaptive front-
tracking solver. After reviewing the literature on numerical methods for
capsule-laden flows, we present the equations governing this problem and
we describe the numerical method and the implementation approach that
we follow. We then proceed to the validation of our solver: we first validate
the finite element method and paraboloid-fitting method computing the elas-
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tic and bending stresses on the capsule’s membrane. Then, we consider the
full capsule and fluid problem and we compare the results produced by our
solver to the literature in a series of validation cases of increasing difficulty,
both in inertial and non-inertial regimes. The two final cases we present
are demonstration cases that would not be feasible without our adaptive
grid: the first case features extreme deformations of a capsule as it squeezes
through a narrow constriction, while the second case shows the inertial mi-
gration of a single capsule in a very large, three-dimensional helical channel
geometry. Finally, we conclude with a discussion on performance, limita-
tions and prospects for this first-of-its-kind adaptive solver for capsule-laden
flows.

In Chapter 5, we use our newly implemented adaptive front-tracking
solver to study the dynamics of capsules through a sharp corner: a very
common geometry in microfluidic devices. After validating our setup for
this specific case, we analyze the trajectory, normalized velocity and area
deformations of the capsules passing through the corner for channel Reynolds
numbers varying from 10−2 to 50. This study is performed for a solitary
capsule passing through the corner, as well as for a pair of capsules and for
a train of ten capsules. We show that, surprisingly, the dynamics of one
capsule is not significantly altered by following or preceeding capsules, even
in the presence of inertia.

Finally, we present in Chapter 6 our initial attempt to implement an
adaptive capsule-laden flow solver. Prior to implementing our front-tracking
solver described in Chapter 4, where the capsule membrane is discretized
using an unstructured mesh (a triangulation), we attempted to compute
the membrane stresses by relying solely on the Cartesian grid: an approach
referred to as the fully Eulerian method. After a review of the relevant
literature, highlighting the promises of this method, we describe the essence
of the fully Eulerian method and its associated equations to be solved on the
Cartesian grid. We then present our implementation strategy and a series
of validation cases. We finish by discussing our hypotheses as to why our
implementation of this method was not successful, as well as some inherent
limitations associated to fully Eulerian methods.
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Dispersed solid phase
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Chapter 2

Accurate static contact law
for the Discrete Element
Method (DEM)

2.1 Introduction

Granular materials are still far from being well understood despite their
ubiquitous presence in natural and industrial processes. Yet, in many ap-
plications it is critical to have reliable tools to provide both qualitative and
quantitative information about granular materials. The information sought
can include flow conditions, jamming or buckling effects and stability of a
granular assembly; as well as the flow rate of a hopper discharge, the run-
out distance of a landslide or the added mass on walls from the Janssen
effect [8]. Historically, granular systems have been studied by conducting
experiments of simplified systems, e.g. a dam break collapse or a hopper
discharge, with the aim to derive empirical laws or to challenge theoretical
models. A short review of the experimental work on dam break collapses
is given in Section 3.1. However, conducting experiments is a long and
costly process, and in most cases only global quantities such as the angle
or repose or the average porosity are accessible to the experimentalist − a
notable exception is the velocity field of two-dimensional flows which can
be accessed via Particle Image Velocimetry (PIV) and Particle Tracking Ve-
locimetry (PTV) techniques [2, 41]. In the past three decades, the increase
of computing power allowed the emergence of computational methods for
the simulation of granular systems. Such numerical simulations alleviate
some of the shortcomings of the experimental approach: a numerical study
can be conducted for a fraction of the cost of its experimental counterpart,
and it allows fine analyses of both global and local quantities. Numerical
simulations also don’t suffer from limitations of the experimental apparatus
itself: for instance, it is easy to numerically simulate a dam break collapse
with no friction between the opening gate and the granular medium, or with
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no vibration from the mechanism lifting the gate, thus providing simulation
data free of imperfections from the experimental apparatus. Of course, nu-
merical simulations have their own drawbacks, which typically depend on
the specific simulation method considered.

There are many ways to numerically study granular systems, and the
choice of a given method depends on the specific application. For systems
with a very large amount of particles such as powders or large industrial ap-
plications with over a billion particles, a continuum approach must be used.
In this class of problems, if the granular system is composed of spherical
particles, the µ(I)-rheology [56, 117] has proved to be a reliable rheolog-
ical model able to accurately reproduce transient flows and steady-state
quantities from experiments and analytical solutions. When smaller gran-
ular systems are considered, or when the particle shape deviates from the
sphere, the Discrete Element Method (DEM) is preferred in one of its two
variations. First, the smooth DEM can be used with a large amount of par-
ticle − up to 108 − but it imposes strict restrictions on the time step as it
is controlled by the time scale of the collision time, which is orders of mag-
nitude lower than that of the time scale of interest. Second, the stiff DEM
does not show such strict time step restriction as it relies on an implicit nu-
merical method, but it is only appropriate for a relatively small number of
particles − up to a few thousands − since a linear system of size N is solved,
with N being the number of particles. In the present work, we are interested
in short-lived systems with a reasonnably large amount of arbitrary-shaped
particles ranging from a few thousands to a few millions, implying the use
of the smooth DEM.

The goal of this chapter is to present the smooth DEM with a strong
emphasis on the contact model and the time integration of the equations
of motion. We propose to implement an accurate contact model in the
already existing code Grains3D [168, 169, 202] and we show that in most
applications, a so-called “memory” contact model is necessary to accurately
reproduce the long-term behavior of the system. This chapter is organized
as follows. In Section 2.2, we describe the framework of the smooth DEM.
The accurate contact model we implement and the choice of the model
parameters are presented in Section 2.3. We then give a short review of
the numerical integration of the equations of motion in translation and in
rotation in Section 2.5. In Section 2.6, we demonstrate the performance
of the various integration schemes and we validate our implementation of
the memory contact model on systems composed of spherical particles. We
discuss our findings and conclude in Section 2.7.
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2.2. General structure of the Discrete Element Method

2.2 General structure of the Discrete Element
Method

The numerical simulations in this study are performed using the standard
soft-body Discrete Element Method (DEM) as introduced by Cundall and
Strack [40]. In DEM, each particle is tracked individually, and the position
and velocity of particle i are determined by explicitely integrating Newton’s
second law of motion:

dvi
dt

=
Fi,ext

mi
(2.1)

dxi

dt
= vi (2.2)

dJi · ωi

dt
= Mi,ext (2.3)

dθi
dt

= ωi (2.4)

where t is the time, xi the position of the center of mass of particle i, mi

its mass, vi its velocity, Ji its inertia tensor, θi its angular position, ωi its
angular velocity, and Fi,ext and Mi,ext are the sums of external forces and
torques exerted on the particle, respectively.

A change of momentum for a given particle is due to the action of body
forces, such as gravity, as well as inter-particle or particle-wall contact forces.
Figure 2.1 shows a top-level description of a typical DEM algorithm, that
can be summarized in three steps to be performed at each time step and for
each particle: (i) the contact detection, (ii) the computation of forces due
to inter-particle or particle-wall contacts and (iii) the numerical integration
of the equations of motion Eq. (2.1)-Eq. (2.4).

Step (i) is a purely computational problem and its complexity depends
on the shape of the particles at play. In the case of spherical particles,
the contact is trivially assessed from the position of the centers of mass
of the two potentially contacting spheres, leading to a very fast detection
(the same applies to a sphere-infinite plane contact). Several approaches are
possible in order to handle the detection of contacts between non-spherical
particles. The method of glued spheres involves approaching any shape
by a cluster of N overlapping spheres. Two glued-spheres particles are in
contact if at least two of their sub-spheres overlap. As N increases, the
approximation of the shape improves but the contact detection becomes
more computationaly expensive as it scales with N2. Several studies [101,
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Start

Step (i): interparticle and
particle-wall contact detection

Step (ii): Computation of
collision forces

Step (iii): Integration of the equations of
motion and displacement of the particles

End

Loop over
time

Figure 2.1: Top-level view of a soft-body DEM algorithm

112, 169] have mentioned that the dynamics is severely perturbed by the
artificial surface roughness, and Kruggel-Emden [112] shows that having N
of the order of 102 is still not enough to obtain realistic trajectories for a
single quasi-sphere bouncing on a flat surface. This makes the method of
glued spheres out of reach, or at least extremely inefficient with respect
to the following methods. If particles are convex polyhedra, the Common
Plane algorithm as used by Cundall [39] and later improved by Nezami et
al. [143] has shown remarkable performance and stability. At the price of
rounded edges, particles of arbitrary shapes can also be described by super-
quadric functions. In that case, the contact detection between two super-
quadric shapes is an optimization problem the complexity of which depends
on the level of angularity of the shapes [149]. For applications where angular
and non-polytope particles need to be described, the most versatile contact
detection algorithm has been proposed by Gilbert, Johnson and Keerthi [62].
It involves solving iteratively small linear systems of size 4 (in 3 dimensions)
until a reasonable approximation of the contact point has been found. Our
DEM solver Grains3D uses the Van den Bergen implementation of this so-
called GJK algorithm [197]. Since the GJK algorithm is limited to convex
bodies, non-convex particles are handled by decomposing their shape into
a set of elementary convex particles on which the GJK algorithm can be
performed successively, as described in [169]. A brief overview of the GJK
algorithm is presented in Appendix A.

Step (ii) will be discussed in detail in the next two sections, and a short
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Figure 2.2: In soft-body DEM, a contact is modelled with an overlap − Please note that
the overlap is intentionally magnified here for visual purposes.

review of step (iii) is presented in Section 2.5.

2.3 Contact model

In soft-body DEM, the computation of contact forces is critical as it deter-
mines the mechanical response of the system. Contact forces are computed
using geometrical features of the contact region, defined in figure 2.2. As
shown in figure 2.2, the contact is modelled as an overlap of the particle
shapes. We denote by un and ut the unitary normal and tangential vectors,
respectively, at the contact point, by C the point of application of the force
and by δn the penetration depth − also called overlapping distance. Note
that the point C here is chosen as the midpoint of the segment AB formed
by the two points that define the greatest penetration depth δn. While this
choice is natural for spherical particles, the point of application of the force
is less straightforward for particles of complex shape, especially when the
physical force is not applied at a single point but is distributed over a line or
a surface. Seelen et al. [181] discuss ways to impose a physically meaning-
ful contact point for most line- and surface-distributed force configurations.
In this study, we consider the occurence of face-face and face-edge contacts
to be minimal with respect to the rest of the contact configurations and
model face-face and face-edge contacts with a single contact point similarly
to the way we model the other contact configurations. DEM that represent
particles as triangulated surfaces [73, 215] or by a Discrete Function Repre-
sentation (DFR) [126, 209] are naturally able to distribute the force over the
multiple contact points of one particle that by construction coincide with
nodes of a triangulated face that belong to the other particle and vice-versa.
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(a) Contact model in translation (b) Contact model in rotation

Figure 2.3: The linear spring-dashpot contact model as a mechanical analog. The dashed
line represents the tangential contact plane.

Once the point of application of the contact force is defined, two contact
models are typically used to compute the contact forces: the Hertz dash-
pot model and the linear spring-dashpot model. While the former has the
advantage of being analytically derived for the contact of two spheres and
other simple shapes − such as a sphere-plane configuration − there is no
analytical generalization to arbitrary shapes, therefore excluding its use in
this study. As a result, we adopt the latter spring-dashpot model − its
schematic view is presented in figure 2.3 − and we elaborate below on its
formulation and implementation in translation both in the normal direction
and in the tangential direction. The formulation of the contact model in
rotation is given in Appendix 2.3.2.

2.3.1 Contact model in translation

The normal contact force Fn is expressed as follows:

Fn = max

(
knδn + ηn

dδn
dt

, 0

)
un (2.5)

where kn and ηn are the normal stiffness coefficient and the normal damp-
ing coefficient, respectively. The normal force represents the viscoelastic
response to the contact, and is intrinsically repulsive. Note that at the end
of the contact, the term knδn could become smaller in absolute value than
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the negative term ηndδn/dt. Therefore, the role of the max(·, 0) condition
is to prevent Fn from becoming an attractive force.

The tangential friction force Ft is also modeled as a linear spring-dashpot,
though slightly modified to allow for the Coulomb friction saturation:

Ft = min (∥ − ktδt − ηtvt∥ , µc∥Fn∥)ut,cumul, (2.6)

ut,cumul = −
ktδt + ηtvt
∥ktδt + ηtvt∥

(2.7)

where ut,cumul is the cumulative tangential unit vector, vt is the tangential
relative velocity, kt and ηt are the tangential stiffness coefficient and the tan-
gential damping coefficient, respectively, and δt is the cumulative tangential
displacement. The reason ut,cumul is introduced instead of simply having
Ft in the direction of −vt is to keep a meaningful tangential direction even
when the system reaches a static state, i.e., when ∥vt∥ approaches the ma-
chine epsilon. The term δt is often referred to as history- or memory-term
because it stores information about the contact at previous instants. It is
expressed as:

δt =


qrotδ

t−∆t
t q−1

rot +
∫ t+∆t
t vt(s)ds if ∥Ft∥ ≤ µc∥Fn∥

−µc∥Fn∥ut,cumul−ηtvt

kt
if ∥Ft∥ > µc∥Fn∥

(2.8)

In Eq. (2.8), δt−∆t
t is the cumulative tangential displacement at the pre-

vious instant (if the contact existed), qrot is the rotation quaternion from
the tangential plane at the previous instant to the current tangential plane,
and µc is the Coulomb sliding coefficient. If we neglect the rotation of the
tangential plane, δt becomes

∫ t
t0
vt(s)ds and can be seen as the length of the

contact path since the contact start time t0. This is at least true until ∥Ft∥
reaches its saturation value µc∥Fn∥. If the tangential friction desaturates,

starting a new path integral
∫ ∆t
0 vt(s)ds would result in a sudden and un-

physical discontinuity in Ft. Defining δt as in Eq. (2.8) ensures that the
tangential friction will remain continuous through desaturation [36, 133].

2.3.2 Contact model in rotation

The friction torque Mr is modeled in a similar fashion as the tangential
force, and is a three-dimensional adaptation of the two-dimensional work of
Ai et al. [4]:

Mr = Mk +Md (2.9)
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with Mk and Md defined incrementally as follows:

M t+∆t
k =


qrotM

t
kq

−1
rot − kr∆θ if ∥M t+∆t

k ∥ ≤Mmax

Mmaxur,cumul otherwise

(2.10)

Md =

{
−ηr dθdt if ∥M t+∆t

k ∥ < Mmax

0 if ∥M t+∆t
k ∥ =Mmax

(2.11)

with ur,cumul =
M t

k − kr∆θ

∥M t
k − kr∆θ∥ (2.12)

and Mmax = µrRij∥Fn∥ (2.13)

In the above equations, kr and ηr are the rolling stiffness coefficient and
the rolling damping coefficient, respectively, ∆θ = ∆tdθ/dt is the rotation
increment, µr is a Coulomb-like static rolling friction coefficient, Mmax is
a saturation torque, ur,cumul is the cumulative rolling direction unit vector
and Rij = RiRj/(Ri + Rj) is the reduced radius. Note that in accordance
with Ai et al. [4], the saturation condition in Eq. (2.10) and Eq. (2.11) only
takes into account the spring-like component Mk of the total torque.

2.4 Contact model parameters

The above contact model requires to set five parameters: the stiffness and
damping coefficients ki and ηi in both translational directions, as well as
the static friction coefficient µc. If a rotational friction is considered, three
additional coefficients need to be determined, as introduced in Section 2.3.2.
Most of these coefficients do not have a clear physical meaning, and assigning
meaningful values to them is not a straightforward task. As a result, there
is no consensus in the literature on a well defined and universal methodol-
ogy to determine the magnitude of contact model parameters, and most of
these values have generally been established for spherical particles only. We
present below our procedure that is designed by carefully reviewing the lit-
erature and assembling parts of previously existing procedures which require
the least amount of hypothesis or sloppy formulations.
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2.4.1 Limitations of the intuitive and physical approach

From Hooke’s law and Hertz theory, and following Dziugys and Peters [47]
(Eq. (43) in their study), one can relate material properties to some contact
model parameters such as the normal stiffness kn:

kn =
4

3

EiEj

Ei(1− σ2j ) + Ej(1− σ2i )
Rij (2.14)

or, for two particles of the same material:

kn =
2EiRij

3(1− σ2) (2.15)

where Ei and σi are the Young’s modulus and the Poisson ratio, respec-
tively, of material i.

Then, it is not difficult to find the expression of the normal restitution
coefficient en [202]:

en = exp

(
−γn

π√
ω2
0 − γ2n

)
(2.16)

where γn = ηn/(2mij) and ω2
0 = kn/mij is the resonance frequency of the

system, with mij = mimj/(mi+mj) the reduced mass of the two contacting
bodies.

The time step ∆t is set according to the contact time Tc. As summa-
rized by Kruggel-Emden [112], the number of recommended time steps per
contact varies strongly from author to author and is often set regardless
of the integration scheme. From the analysis of the accuracy of dozens of
integration schemes, Kruggel-Emden [112] finds that having 20 time steps
per contact is typically sufficient to get a resolved enough simulation. In a
simple two-sphere contact case, the contact time is expressed as:

Tc =
π√

ω2
0 − γ2n

=

√
mij(π2 + ln(en)2)

kn
(2.17)

For steel, typically E = 210 GPA, σ = 0.3, en = 0.75 and the density
ρ is 7.85kg/m3. Considering two colliding steel balls of radius 1mm, we
find kn ≈ 7.8 × 107N/m. This means that the contact time Tc is close to
5 × 10−8s, imposing ∆t ≤ 2.5 × 10−9s. For computational reasons, such a
small time step is practically unachievable.
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2.4.2 Procedure to find contact parameters in translation

At this stage, performing reliable DEM simulations can seem out of reach.
However, it has been shown by Yan et al. [211] and Cleary [33] that for
rigid particles a physical value for the normal stiffness kn does not play a
significant role in the overall dynamics of the system, and that decreasing its
value by orders of magnitudes − depending on the system − can be safely
performed. In fact, it is not the actual stiffness that drives the behavior
of the granular medium, and decreasing its value primarily increases the
contact time Tc, allowing for larger time steps ∆t. While the artificially
lengthened contact time Tc is kept much smaller that the time scale of the
system, the dynamics of the granular medium is unchanged. For a given
force exerted on a particle, the stiffness also controls the extent of overlap
between the contacting particles that is of major importance for obvious
geometric reasons. On the basis of this approach, contact model parameters
are set using the following procedure:

Step 1: Determine values for δmax, en, et and µc.
Based on empirical observations, Yan et al. [211] and Cleary [33] concluded
that an appropriate particle overlap should remain below 0.5% of the parti-
cle radius. The restitution coefficient en lies by definition in the range 0 to
1, and its value is easy to measure experimentally, at least for spheres. The
sliding friction coefficient is also straightforward to measure experimentally
and typically ranges from 0 to 1.5. The tangential restitution coefficient
et is a less straightforward parameter to measure, and can be set with a
calibration procedure.

Step 2: Compute kn from an estimated maximum impact ve-
locity vmax.
Solving analytically for the overlap δn in a simple two-sphere gravity-less
contact case and computing its maximum value δmax leads to

δmax =
vmax

ω
e−γnTmax sin (ωTmax) (2.18)

with

ω =
√
ω2
0 − γ2n =

√
kn
mij
− γ2n (2.19)
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and

Tmax =
1

ω
arctan(ζ), ζ =

ω

γn
= − π

ln(en)
. (2.20)

From Eq. (2.18), we can solve for kn:

kn = mij(1 +
1

ζ2
)

(
vmax

δmax
e
− 1

ζ
arctan(ζ)

sin(arctan(ζ))

)2

(2.21)

Step 3: Compute the contact time Tc and the normal damping
coefficient.
Tc is computed from Eq. (2.17). Then, using Eq. (2.16), the normal damp-
ing coefficient ηn is given by:

ηn = −2mij
ω0 ln(en)√
π2 + (ln(en))2

(2.22)

Step 4: Compute the tangential parameters kt and ηt.
Following Pournin [155] (Eq. 22 in his study), the tangential model param-
eters can be linked to the normal parameters in the following way:

kt =
kn

1 +mij

(
R2

i
Ii

+
R2

j

Ij

) π2 + ln(et)
2

π2 + ln(en)2
(2.23)

ηt =
ηn

1 +mij

(
R2

i
Ii

+
R2

j

Ij

) ln(et)

ln(en)
(2.24)

where Ii and Ij are the moments of inertia about the rolling axes of the
particles.

At this point we remind the reader that the above procedure to find
translational parameters has been derived for spherical particles, and that
an extension to non-spherical particles is not straightforward a priori. In the
case of ellipsoids, Seelen [181] has modified this expression by replacing the
radii R1 and R2 by the distance between the contact point and the centre
of gravity of the two ellipsoids. We discuss this extension to non-spherical
bodies in Section 3.4.3.
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2.4. Contact model parameters

2.4.3 Contact parameters in rotation

In rotation, we set the contact parameters based on the approach of Jiang et
al. [99], as it is developed from a credible micro-mechanical model. Since the
contact between two rigid bodies never occurs over a point but rather over a
surface, Jiang et al. [99] consider an infinite distribution of spring-dashpots
over this surface and derive a relation between the contact parameters in
translation and in rotation. The friction torque between two spheres of
identical radius R is expressed as follows:

Mr =
(δrR)

2(knθ + ηnθ̇)

12
ur,cumul (2.25)

and ∥Mr∥ ≤Mmax =
1

6
δR∥Fn∥ (2.26)

with θ the relative rotation between the two rigid bodies and δr a quantity
related to the surface area of contact, the so-called shape parameter, to be
calibrated with experiments. Both rolling friction models from Ai et al. [4]
and Jiang et al. [99] introduce a saturation torqueMmax given by Eq. (2.13)
and Eq. (2.26), allowing a relationship between the shape parameter δr and
the static rolling friction coefficient µr:

δr = 6µr (2.27)

From Eq. (2.25) and Eq. (2.27), the rolling contact parameters can be
related to the normal contact parameters through the static rolling friction
coefficient: {

kr = 3knµ
2
rR

2

ηr = 3ηnµ
2
rR

2
(2.28)

Note that the parameter µr still needs to be calibrated with experiments,
but its physical meaning is clearer than the physical meaning of the shape
parameter δr:

µr = tanβ, (2.29)

where β is the maximum slope angle at which the rolling friction torque
balances the torque due to gravity [4].
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2.5 Time intergration schemes

2.5.1 Integration of the translational motion

In order to numerically integrate Eq. (2.1) and Eq. (2.2), numerical schemes
commonly used in DEM can be categorized in two families: (i) One-step
schemes and (ii) Multi-step schemes [112].

One-step schemes includes the simple Forward-Euler scheme, that com-
putes the position x(t + ∆t) and velocity v(t + ∆t) at the next time step
from the position x(t), velocity v(t) and acceleration a(t) at the current
time-step: {

x(t+∆t) = x(t) + ∆tv(t)
v(t+∆t) = v(t) + ∆ta(t)

(2.30)

The Forward-Euler scheme is simply a Taylor series where the terms of order
two and above have been truncated. This scheme is of order one both for
the postion x(t) and the velocity v(t). To achieve higher orders of accuracy,
one could truncate the Taylor series to keep higher order terms, but in this
case the derivatives of the acceleration must be approximated carefully to
preserve the desired accuracy. The one-step schemes family also includes
the classical second and fourth order Runge-Kutta schemes, however they
require several force evaluations per time step which prohibits their usage
in the smooth DEM. The most commonly used scheme is the second order
Leapfrog, which gets its name from the half time step offset of the velocity
with respect to the position:{

x(t+∆t) = x(t) + ∆tv(t+ ∆t
2 )

v(t+ ∆t
2 ) = v(t− ∆t

2 ) + ∆ta(t)
(2.31)

In addition to second order accuracy, requiring only one force evaluation per
time step, being explicit and stable, the Leapfrog scheme is also symplectic.
Its minor drawback is to compute the velocity at t+∆t/2, which necessitates
(i) the computation of v(∆t/2) from the initial condition v(t = 0) with a
one-step scheme, e.g., the Forward-Euler method; and (ii) to interpolate the
velocity whenever v(t) is needed: v(t) = (v(t+∆t/2) + v(t−∆t/2))/2.

Members of the second family of multi-step schemes allow to reach higher
accuracies with synchronized velocities and positions, while still requiring
only one evaluation of the forces per time step. This comes at the expense
of storing information from previous time steps. One example is the second
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2.5. Time intergration schemes

Figure 2.4: Illustration of the error stemming from the latency in the detection of the
beginning and the end of the contact. Adapted from Kruggel-Emden et al. [112].

order Adams-Bashforth scheme, expressed as follows:{
x(t+∆t) = x(t) + ∆t

2 (3v(t)− v(t−∆t))

v(t+∆t) = v(t) + ∆t
2 (3a(t)− a(t−∆t))

(2.32)

Higher order Adams-Bashforth schemes are straightforward to implement at
the cost of accessing information further in the past [112]. More advanced
high order schemes can be constructed, such as predictor-correctors, but
their usage in DEM remains limited. As such, they will not be discussed
here and the interested reader is referred to [47, 112].

In addition to the theoretical accuracy of the integration schemes, ex-
tra errors are introduced at the beginning and the end of the contact. As
discussed by Kruggel-Emden et al. in [112] and sketched in figure 2.4, the
exact contact time t1 happens in general between two time steps, i.e., the
contact is detected at the next time step at time t2. During the latency time
t2 − t1 in the detection of the contact, the contacting particles experience
an unconstrained motion instead of a motion impeded by repulsive contact
forces. Symmetrically, the end of the contact is detected at time t4 instead
of time t3, and the contacting particles experience fictitious contact forces
during the time interval t4 − t3. The resulting errors are often overlooked,
but they lead to a degenerescence to first order on the accuracy of the po-
sitions and the velocities of the contacting particles, as verified in Section
2.6.1. This means that the order of accuracy of the integration scheme is not
an important factor in applications involving fast binary contacts. On the
other hand, if the contact duration is very long this order degenerescence
from the detection of the contact time is less relevant, and the use of higher
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2.5. Time intergration schemes

order integration schemes is justified.
After reviewing a wide range of integration schemes, Kruggel-Emden et

al.[112] conclude that in the smooth DEM, the use of lower order schemes
with reasonably small time steps − they advise about 20 time steps per
contact − is more efficient than higher order schemes with larger time steps.
This conclusion ties in with the popular choice of the Leapfrog scheme, which
is as computationally cheap as the Forward-Euler method while being more
stable, second order accurate, and symplectic. This Leapfrog scheme is
implemented in our solver Grains3D in order to integrate the equations of
motion in translation.

2.5.2 Integration of the rotational motion

In the case of spherical particles, the numerical integration of the angular
equations can be performed using the same numerical schemes as presented
above, as Eq. (2.3) and Eq. (2.4) are similar to Eq. (2.1) and Eq. (2.2).
However, when other particle shapes are considered the inertia tensor Ji be-
comes time-dependent which complexifies the time integration of Eq. (2.3).
Since the inertia tensor is constant in a body-fixed frame of reference, i.e.,
a frame of reference attached to the considered particle, denoted with the
superscript b in the following, Eq. (2.3) can be simplified to isolate the term
dωb

i /dt:

dJiωi

dt
= Ti ⇔

dJ b
iω

b
i

dt
+ ωb

i × J b
iω

b
i = J b

i

dωb
i

dt
+ ωb

i × J b
iω

b
i = T b

i (2.33)

⇔ dωb
i

dt
=
(
J b
i

)−1 (
T b
i − ωb

i × J b
iω

b
i

)
(2.34)

While Eq. (2.34) is conceptually simpler to integrate in time than Eq. (2.3),
the rotation of ωi and Ti from the space-fixed to the body-fixed frame of
reference adds a significant computational overload. Moreover, if a second
order scheme is sought, particular attention is needed in the computation
of ωb

i and T b
i , since they may require the angular position that is not yet

known at the current time step. In such cases, predictor-corrector schemes
such as the PCDM method [180, 218] are good candidates. For the sake
of simplicity a first order scheme is implemented in our solver Grains3D to
integrate the equations of motion in rotation.
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Figure 2.5: Error on the penetration depth δn of a sphere bouncing on a horizontal plane
for the first order Forward Euler scheme (solid line), the second-order Adams-Bashforth
scheme (dotted line) and the third order Adams-Bashforth scheme (dash-dotted line). For
each scheme, the bouncing sphere is either (i) already in contact with the horizontal plane
at t = 0 (“x” markers), or (ii) away from the horizontal plane at t = 0 (“+” markers).

2.6 Validation of the numerical method

The code Grains3D used in this study has successfully reproduced numerous
experimental results in the past in the case of a contact model without
memory [46, 63, 64, 169, 202]. Here, we only seek validation of the memory
contact model presented in Section 2.3.1 and Section 2.3.2. We perform
this validation for systems of spherical particles that are the most common
systems studied in the literature. We also illustrate the order degenerescence
due to the contact detection latency discussed in Section 2.5.1.

2.6.1 Single sphere bouncing on a horizontal plane

To illustrate the order degenerescence discussed in Section 2.5.1, we consider
a sphere of massm and initial velocity v0 boucing on a horizontal plane. Two
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2.6. Validation of the numerical method

cases are considered: (i) the time t = 0 coincides with the beginning of the
contact between the sphere and the horizontal plane, or (ii) the sphere is not
yet in contact with the horizontal plane at t = 0. We show the results of this
simple test case using the first order Forward Euler scheme, and the second
and third order Adams-Bashforth schemes. The test is performed without
gravity and only the normal response of the contact model is important since
the tangential velocity is zero at all times. The analytical solution for the
penetration depth δn is the solution of a simple damped harmonic oscillator
equation:

∂2δn
∂t2

+ 2γn
∂δn
∂t

+ ω2
0δn = 0 (2.35)

with γn =
ηn
2m

and ω2
0 =

kn
m
. (2.36)

Since in practice γn < ω0 the solution to the above equation is:

δn(t) =
v0
ω
e−γnt sinωt, with ω2 = ω2

0 − γ2n. (2.37)

Note that Eq. (2.37) is only valid when the contact exists, i.e., for t < TC
with TC = π

ω the contact duration.
Figure 2.5 shows the the L2-error of the penetration depth δn in each

case of the aforementioned bouncing sphere configuration. When the contact
aleady exists at t = 0, the L2-error of each considered integration scheme
scales with the expected order of accuracy. However, if the sphere is not yet
in contact with the horizontal plane at t = 0, every scheme sees its order
of accuracy reduced to first order. As discussed in Section 2.5.1, this order
degenerescence is a consequence of the time of the beginning of the contact
being resolved at first order only.

2.6.2 Quantifying the residual velocity

The main motivation to introduce the memory terms ktδt and kr∆θ from
Eq. (2.6) and Eq. (2.10) is to allow the system to reach a static state.
Without these terms, the translational and rotational velocities never reach
values close to the machine epsilon. Figure 2.6 shows how this contact model
with history dramatically improves the static state of a system of 750 spheres
settling in a box. Each line corresponds to one simulation with random
initial positions of the spheres. We can see that for some of the randomly
generated initial conditions it may take longer to reach a static state, but the
static state is eventually reached. For a simulation time sufficiently large,
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Figure 2.6: Time evolution of the average velocity for a system of 750 spheres settling
in a box. Dotted line: no memory term in the contact model. Solid line: memory term in
the contact model.

the residual velocity of the particles is orders of magnitude lower when the
contact model includes the history terms: lower than 10−10 m/s versus larger
than 10−4 m/s in translation, and lower than 10−8 rad/s versus larger than
10−1 rad/s in rotation. These results show that the contact model with
history is at least able to yield true static states where the residual velocity
of the particles is as close as possible to the machine epsilon. In the next
validation case, we challenge this model further and show that it reproduces
physical results for the classical test case of the hopper discharge.

2.6.3 Hopper discharge

In this test case, we consider a hopper discharge performed several times
with various translational static friction coefficients µc. As µc increases,
we measure the repose angle of the pile. The details of the simulation
parameters are presented in table 2.1. The particle density ρ, particle radius
R and normal restitution coefficient en are chosen to match those of Yan et
al. [211], while the rest of the coefficients are determined using the procedure
described in Section 2.4.2.

Our simulation results are shown in figure 2.7, together with the results
from Yan et al. The agreement is satisfactory: both curves follow the same
increasing trend and show the same saturation behavior, with a repose angle
of about 36o for µc = 0.5. One can notice that for µc in the range [0.05, 0.20]
the slope is steeper in our simulations than in the numerical study of Yan
et al. This discrepancy may be explained by the use of a different contact
model (Yan et al. use the Hertz-Mindlin model) or by a slightly different
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Name Symbol Value Unit

Particle density ρ 2.5× 103 kg/m3

Particle radius R 10−3 m

Normal stiffness
(giving δmax = 0.005×R) kn ≈ 7.34× 105 N/m

Normal restitution coefficient en 0.45 n/a

Tangential stiffness kt ≈ 2.26× 105 N/m

Tangential damping factor γt ≈ 4.0× 104 s−1

Static friction coefficient
particle-particle

µc,part-part 0.05 − 0.65 n/a

Static friction coefficient
particle-wall

µc,part-wall 0.45 n/a

Rolling friction coefficient
particle-particle

µr,part-part 0.45 n/a

Rolling friction coefficient
particle-wall

µr,part-wall 0.1 n/a

Time step ∆t 5.0× 10−7 s

Table 2.1: Particle properties and contact model parameters of the Hopper discharge
simulations.
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Figure 2.7: Variation of the repose angle θ with the static friction coefficient µc. Solid
line: this study. Dashed line: adapted from Yan et al. [211]
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setup, for instance with regards to the opening of the gate.

2.7 Conclusion

In this chapter, we have described the smooth Discrete Element Method
(DEM) with the aim to simulate granular flows composed particles of ar-
bitrary shapes. Our description was focused on the contact model with a
so-called “memory” term, as well as on the numerical integration of the
equations of motion, both in translation and in rotation. With regards to
the contact model, we have implemented a tangential and rotational friction
terms which allows the granular assembly to reach a static state where the
velocity of each particle approaches the machine epsilon. In hand with the
formulation of the memory contact model, we reviewed the procedure to
give relevant values to the numerous model parameters, some of which have
no clear physical meaning. Our resulting procedure is derived for spherical
particles: its validity for non-spherical shapes is therefore not guaranteed,
although previous studies using a similar procedure obtained satisfactory
results with ellipsoidal particles [181]. Two cases were considered to val-
idate the implementation of our memory contact model: (i) the average
translational and rotational velocities of 750 settling spheres were analyzed
and shown to approach the machine epsilon, performing over eight orders of
magnitude better than the contact model without the memory term; and (ii)
the repose angle of a granular assembly composed of spheres discharged from
a hopper was plotted for a range of Coulomb friction coefficients against a
reference value from the literature, and satisfactory agreement was found.
Then, with regards to the numerical integration of the equations of motion,
we have demonstrated the order degenerescence to first order of the smooth
DEM, as was first mentionned by Kruggel-Emden et al. [112]. This de-
generescence of the order of accuracy of the computed dynamics is due to
a latency in the detection of the contacts, which is inherent to the design
of the smooth DEM. In our minimal example of a sphere impacting a flat
surface, we show that despite numerical integrators of second or even third
order of accuracy, the error on the position of the centroid of the particle
with respect to its analytical solution is only first order.

Implementing the aforementioned memory contact model in the granular
solver Grains3D makes it possible to accurately simulate granular systems
of complex shaped particles in a wide range of static and dynamic regimes.
In the next chapter, we propose to study numerically and experimentally
dam break collapses of cross-shaped particles: as will be discussed in Sec-
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tion 3.4.2, accurately modelling static contacts in such systems is critical to
properly simulate the base of the granular column and in turn, the whole
granular assembly.
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Chapter 3

Granular avalanches of
entangled rigid particles

3.1 Introduction

In the past two decades there has been a growing interest in the study of
granular systems, in most cases composed of spherical particles. In the case
of rectangular and axisymmetric dam break configurations, Lajeunesse et
al. [118] have provided experimental results and a force-balance model that
correctly reproduces the scaling of the run-out distance as a function of the
initial aspect ratio. Balmforth et al. [14] also conducted dam break experi-
ments and Kerswell [106] developed a depth-average model to explain their
observations. In the meantime, the smooth DEM gained popularity with the
increase of computing power. Most often, the particle shape is simplified to
spheres, ellipsoids or even composite particles made of overlapping spheres.
However, numerous studies [33, 34, 183] show that the particle blockiness,
particle surface roughness and particle aspect ratio have a major impact on
the dynamics and the packing properties of the considered systems. Non-
convex particles are even less represented in experimental and numerical
studies, even though most natural processes involve arbitrary shapes, in-
cluding non-convex ones. It is reasonable to expect that the flow properties
and steady-state quantities are significantly different in the case of convex
and non-convex particle shapes, as Rémond et al. [176], Gravish et al. [66]
and more recently Landauer et al. [119] and Wang et al. [205] have observed
with packings of non-convex particles.

When studying granular materials, dam break collapses on a horizontal
flat surface have been popular due to the relative simplicity of this setup and
the rich physics that granular media exhibit in this configuration. Already in
2005, Staron and Hinch [185] use a two-dimensional discrete element method
to study the collapse and spreading of disk-shaped particles onto a horizon-
tal plane. They show that for initial aspect ratios a ≳ 2.5, the column has a
period of free-fall, whereas columns with a ≲ 2.5 have not. This observation
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explains the existence of two distinct scaling laws for the run-out distance
versus the initial aspect ratio, as previously reported by Lajeunesse et al.
[118] and Lube et al. [130, 131]. It also highlights that the run-out distance
is not only dependent on effective flow properties such as basal friction, but
is also strongly affected by the fall dynamics. Moving to three-dimensional
simulations, Lacaze et al. [116] propose a comparison between DEM simula-
tions and experimental results in the case of a planar channel − of width less
than two particle diameters. The response they obtain exhibits a flowing
top layer and their DEM simulations are in good qualitative and quantita-
tive agreement with their experiments. Furthermore, they already highlight
the difficulty of assigning values to friction parameters in their DEM sim-
ulations and the need to rely on calibration experiments. Girolami et al.
[63] later performed fully three-dimensional avalanches of spherical particles
with DEM simulations and compare their numerical results to the experi-
ments of Lajeunesse et al. [118]. The quantitative scaling with the initial
height-to-width aspect ratio and the qualitative flow structure and scaled
free surface show very good agreement with Lajeunesse’s experimental data.
Girolami et al. [64] later use DEM simulations to study unchannelized dam
break flows, and show that the run-out distance versus initial aspect ratio
scaling power lies in between that of previously reported channelized and
axisymmetric flows. With regards to numerical simulations of avalanches
of non-spherical particles, Lim et al. [122] study two-dimensional collapses
of spheres, convex particles and non-convex grit-like particles. Although
not compared to experimental data, their results reveal that the run-out
distance and angle of repose are greater for non-convex particles than for
convex particles and spheres. Finally, Rakotonirina et al. [168] consider
granular slumpings of a realistic number of particles − over two millions −
in channels of periodic and finite width. Claiming their icosahedral particles
have similar shapes to those used in the experiments of Lube et al. [130]
and Balmforth et al. [14], they quantitatively compare the run-out distance
and its scaling law versus the inital aspect ratio to those experiments. They
obtain a very good agreement with the data reported by Balmforth et al.,
and an overestimated run-out distance when compared to the experimental
results of Lube et al., highlighting the relatively wide range of reported data.

The past decade has seen rapid developments in the field of DEM of
non-spherical particles, and we shall recall briefly here the main methods
and recent contributions relevant to the simulations of non-spherical par-
ticles. When the shape of grains deviates from discs or spheres, the first
challenge is to describe the shape. While it is possible to mesh the surface
of each particle, the computational cost of the contact detection algorithm
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limits this approach to a small number of particles [73, 215], and other ap-
proaches are preferred for large granular systems. Ellipses and super-quadric
shapes were among the first non-spherical shapes to be considered in DEM
simulations [124, 175, 209]. Super-quadric shapes still receive considerable
interest as they offer a unified framework to represent a wide range of shapes
[126, 127, 149]. However, with greater blockiness the contact detection algo-
rithm of super-quadric shapes become more and more costly. As a result, in
the case of particles that have faces and edges, a polyhedral representation
as in [168, 169, 181, 202] is better suited than high order, i.e., “sharp”, super-
quadrics. In terms of physics, we note that most of the studies regarding
non-spherical particles, and especially regarding non-convex particles, focus
on random packings − see, e.g., [66, 119, 132, 176, 181, 205] − resulting
in a gap between our understanding of static and dynamic assemblies of
non-spherical particles. With regards to static assemblies of non-spherical
particles, Seelen et al. [181] present a unified framework to treat any convex
shape including cuboids, ellipsoids and more complex polyhedra that are
close to sand grains and woodchips. They investigate the packing fraction
as a function of the distance to the wall, and report a strong influence of
the aspect ratio of ellipsoids and cylinders. Packings of non-convex particles
have been studied by Ludewig et al. [132], Gravish et al. [66], Rakotonirina
et al. [169] and Landauer et al. [119], among others. Ludewig et al. con-
sider the compaction of non-convex particles made of composite overlapping
spheres with varying sphericity. They show that decreasing the sphericity
of the shapes − which in the case of their study results in increasing their
concavity − leads to more interlocking of the granular assembly, measured
in terms of the mobility of the particles. Furthermore, they show that the
greater the concavity of the grains is, the greater the stability of the whole
assembly is despite a lower packing fraction. More recently, Landauer et
al. [119] analyze the bulk and tapping densities as well as the angle of
repose of granular assemblies of various shapes, including the non-convex
stellated octahedron, tetrapod and quadropod shapes. Their work belongs
to the few DEM studies [65, 66, 169, 201] that validate their simulations of
non-convex particles with experiments, and as such they highlight the diffi-
culty to find contact parameters and conclude that calibration is necessary
for every shape. We face here the same difficulty with assigning values to
our friction model parameters. We discuss this issue in Section 3.4.3. On
the dynamic behavior of non-spherical particles, Rakotonirina et al. [169]
consider rotating drums filled with particles of spherical, convex and non-
convex shapes and report a wide range of flow regimes depending on the
angular velocity of the rotating drum − the non-convex shape exhibiting
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the greatest complexity and variety of regimes. Govender et al. [65] show
with experiments of 3D printed non-convex particles and GPU-based DEM
simulations that in the case of a hopper discharge the dynamic behavior
of the assembly is strongly impacted by the concavity of the grains, since
the non-convexity gives rise to jamming effects. Interestingly, the authors
of [65] are able to observe signifiant differences in the flow behavior with
Schönhardt polyhedra compared to triangular prisms while a Schönhardt
polyhedron only slightly differs from its convex counterpart, the triangular
prism. However, due to hardware limitations, the force model used in their
studies does not include a tangential memory friction term which we shall
see in Section 3.4.2 is crucial to reproduce static states.

In this chapter, we investigate experimentally and numerically the behav-
ior of granular materials beyond the well-known spherical or convex shapes,
as a step forward in the pursuit of modeling realistic granular media. We
choose non-convex particles with a large aspect ratio that are very prone to
entanglement and we perform dam break experiments and simulations. We
report novel flow behaviors typical of particle entanglement. Our traditional
CPU-based architecture allows us to include a memory friction term in or-
der to accurately reproduce stable configurations of particles of any shape,
including of non-convex shape. We show that for the sole dam break setup,
considering non-convex particles opens the Pandora box to a new range
of granular behaviors that were not reported yet in the literature, such as
the top-driven collapse or the intermittent regime − a regime where repro-
ducibility is lost and where the flow outcome is determined by the random
initial particle configuration. We perform DEM simulations of our exper-
imental setup using the code Grains3D introduced in Chapter 2, and we
show that our numerical simulations accurately reproduce both qualitative
and quantitative results. Then, we explore the information provided by the
microstructure and the force network, we highlight the importance of the
memory term in the tangential friction model, and we discuss the choice of
contact parameters.

The rest of this chapter is organized as follows. In Section 3.2 we present
the flow configuration and describe the experimental equipment used to
record the granular collapses. We analyze experimental and numerical re-
sults in Section 3.3 in terms of dynamics of the collapse, flow map, final
height, run-out distance, time evolution, force network and fabric anisotropy.
We then discuss in Section 3.4 the key elements of the DEM that allow for
a quantitative match of the numerical results with the experimental data.
Finally, we give concluding remarks in Section 3.5.
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Figure 3.1: Schematics of the experimental setup: (a) the dam break apparatus and (b)
the shape of the particles.

3.2 Experimental and numerical setup

3.2.1 Experimental setup

The tests are performed in a dam break setup sketched in figure 3.1a. The
box is made of acrylic and its dimension is L×H ×W = 64× 30× 20 cm.
The setup features a sliding gate (made of PVC). Slots are milled on the
side walls to guide the vertical motion of the gate, and therefore, its location
can be easily adjusted to L = 4, 8, 12, 20 and 30 cm − or L ≈ 1.5Lp, 3.0Lp,
4.4Lp, 7.4Lp and 11.1Lp respectively, where Lp = 27mm is the characteristic
length of the particles shown in figure 3.1b. A pneumatic cylinder was
used to control the release of the gate. The gate releases with an (almost
constant) acceleration of (43±3m/s2), reaching the speed of ∼ 3±0.1m/s in
0.07 s (calculated by image processing). The frames holding the pneumatic
cylinder were placed on a separate optical table. Hence, the vibration of the
gate coming to a halt does not affect the experiments.

Four light sources are placed at different angles to illuminate the parti-
cles. A high-speed camera (FASTCAM Mini UX100) is used in combination
with a Carl-Zeiss Makro-Planar T* 50 mm f/2 ZF.2 lens. Videos are cap-
tured at 250 frames per second, and the imaging setup resulted in a pixel
size of ∼ 0.43mm.

In each experiment, the initial granular pile has dimensions of L0×H0×
W0, where L0 is the length, H0 is the height, and W0 is the width. All
these parameters are changed in the experiments resulting in 46 different
experimental conditions, each repeated up to 8 times.
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3.2. Experimental and numerical setup

3.2.2 Particles

Cross-shaped plastic tile spacers (from Faithfull) are used as particles (see
figure 3.1b). The particles have a length of Lp = 27mm, with arm width
of Wp = 2mm, and thickness of Hp = 3mm. Hence, the volume of each
particle is 0.312 cm3. The mass density of the particles is measured to be
770 kg/m3.

We followed Balmforth and Kreswell [14] to characterize the friction
properties of the particles. We found the “bed” friction angle (between
acrylic and particle) to be δ = 32◦ ± 5◦ and the “internal” friction angle
(between particles) to be θ = 24◦ ± 2◦. Compared to glass particles (c.f.
Balmforth and Kreswell), the particles used in the present study have a
larger bed angle of friction but a similar internal friction angle.

3.2.3 Numerical setup

To numerically reproduce the experiments, we use the contact model with
history described in Section 2.3 − with no rolling friction as our particles
are neither spheres, cylinders nor ellipsoids. Our contact model is validated
for systems of spherical particles, as this model has not yet been applied to
non ellipsoidal particles in the literature. For each simulation, we proceed
as follows: first, we generate the same geometry as in the experimental
apparatus. Then, the particles are poured in the container with random
initial positions until the system reaches a static state. At t = 0, the gate
is removed. The number of particles considered ranges from 1300 to 7000,
and the values assigned to the contact model parameters are listed in table
3.1. The normal stiffness kn was computed to yield a maximum overlap
distance δmax of about 1% of the radius of the sphere of equal volume −
using an impact velocity corresponding to a free fall from a 30cm height, i.e.,√
2 · 9.81 · 0.3 ≈ 2.4m/s. This leads to δmax ≈ 5× 10−5 m. In practice, this

maximum overlap is very rarely reached, and the average overlap is orders
of magnitude lower − typically between 0.1% and 0.001% of the radius of
the sphere of equal volume. Please note that the contact parameters in the
tangential direction are not set following the procedure described in Section
2.4.2. We discuss the reasons why this procedure is not followed in Section
3.4.3.

To ensure each case is treated in a systematic way during the post-
processing step, we determine quantities such as the final height and the
final length using image-processing routines. In particular, a quantity that
is not obvious to define is the final length of the granular assembly, also
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Name Symbol Value Unit

Particle density ρ 770 kg/m3

Normal stiffness kn 4.5× 105 N/m

Normal restitution coefficient en 0.85 n/a

Tangential stiffness kt 3× 102 N/m

Tangential damping factor γt 103 s−1

Static friction coefficient
particle-particle

µc,part-part 0.46 n/a

Static friction coefficient
particle-wall

µc,part-wall 0.62 n/a

Time step ∆t 2.5× 10−6 s

Table 3.1: Particle properties and contact model parameters in the numerical simulations
of non-convex particles.

called run-out distance, L∞. We follow the same approach as Rakotonirina
et al. [169] and define the run-out distance as follows: using a top view
of the final configuration, the run-out distance L∞ is the leftmost column
of pixels with a fraction of white pixels − referred to as intensity of the
pixel column − that is less than 10%. Figure 3.2a shows a typical output of
this post-processing routine. The solid line corresponds to the pixel column
intensity and the dashed line corresponds to the run-out distance L∞. Given
the uncertainty of this measurement, we provide error bars in figure 3.7
with a minimum value corresponding to the run-out distance based on a
20% intensity threshold and a maximum value corresponding to the run-out
distance based on a 1% intensity threshold. Similarly, the initial and final
heights of the granular assembly are measured using an image processing
routine that computes the average height of the pile along the width of the
channel, shown in figure 3.2b. The solid line corresponds to the average
height and the dotted lines indicate the first and third quartiles, used to
compute the error bars in figure 3.8.

Finally, in order to quantitatively compare flow properties of non-convex
particles and spheres, we carry out numerical simulations of dam break
avalanches of spheres using the same numerical setup and contact parame-
ters as Girolami et al. [63]. In particular we compute cases 1, 2 and 3 −
each case is computed ten times corresponding to ten different initial mi-
crostructures − from Table 1 of [63] and we successfully reproduce results
from figure 4 in [63] which shows a very satisfactory agreement between nu-
merical simulations of spherical particles and the experiments of Lajeunesse
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3.2. Experimental and numerical setup

(a)

(b)

Figure 3.2: (a) Example of a post-processing output for the run-out distance L∞ of a
simulation, from a top view of the avalanche. The solid line corresponds to the intensity
of a given pixel column (the maximum intensity corresponds to the top of the image, the
minimum intensity to the bottom). The dashed line indicates the run-out distance: in
this case, L∞ = 32 cm. (b) Example of a post-processing output for the final height H∞
of a simulation. The solid line indicates the average final height and the dotted lines show
the first and third quartiles. For visual purposes, an example with a particularly wide
interquartile range (IQR) is shown (a typical IQR is half the size of that shown on this
figure).
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3.3. Experimental and numerical results

et al. [118]. In the following, we use these simulations to access data that
is not reported in [63], such as the average velocity versus time.

3.3 Experimental and numerical results

3.3.1 Qualitative Analysis

Figures 3.3 and 3.4 present the experimental and numerical results of two
novel avalanche behaviors. For those two figures only, in order to visually
compare the simulations with the experiments, a gate effect is included in
the simulations, i.e., the particles in contact with the gate experience friction
when the gate slides upwards at a finite speed. The top-driven collapse, in
figure 3.3, is by far the most common avalanching mechanism of our cross-
shaped particles and is observed for all aspect ratios. During this collapse,
the top part of the column falls first in a wave-like fashion. As particles
are entangled, their fall is impeded by their neighbours, except for the top
layer of particles which experiences less entanglement. As this top layer
can fall freely off the granular column, a new layer of particles can repeat
this process. This top-driven collapse is not observed for spherical or even
convex-shaped particles [14, 63, 118]: it is intrinsically linked to the entan-
glement of the cross-shaped particles. Sometimes, an initial microstructure
leads to another novel avalanche behavior presented in figure 3.4. Unlike
the top-driven collapse, the avalanche is triggered below the top layer of
particles, around the mid height of the column. It results in the column
bending forward during the first stage of the avalanche, before fully col-
lapsing. This buckling behavior is found to be far less frequent than the
top-driven collapse, and is only observed for tall narrow columns as shown
in figure 3.6.

It is observed experimentally and numerically that sometimes even the
top-layer of particles is too entangled to avalanche, and the granular column
remains stable after the opening of the gate. These entangled configurations
are typical of non-convex particles and pseudo-stable arches have been re-
ported in the case of a hopper discharge of Schönhardt polyhedra by Goven-
der et al. [65]. We find experimentally and numerically that for particular
initial dimensions of the column, whether an avalanche occurs or the system
remains stable is determined by the random initial configuration of the par-
ticles. We denote by intermittent this behavior where reproducibility is lost,
and show an example in figure 3.5. The intermittence is another novelty of
these entangled flows, as a granular dam break performed under the same
conditions produces the same macroscopic outcome when convex particles
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3.3. Experimental and numerical results

1

Figure 3.3: Snapshots of a top-driven col-
lapse with an initial aspect ratio H0/L0 =
6. Left: experiments. Right: simula-
tion. Time increment between each frame:
0.145s. Videos of this collapse are available
online at https://youtu.be/yzlzn XrkJA.

1

Figure 3.4: Snapshots of a buck-
ling collapse with an initial aspect ra-
tio of H0/L0 ≈ 7. Left: experi-
ment. Right: simulation. Time incre-
ment between each frame: 0.12s. Videos
of this collapse are available online at
https://youtu.be/DBmOVcR9PrU.
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3.3. Experimental and numerical results
1

Figure 3.5: Snapshots of a simulated collapsing assembly (top) and of a simulated stable
assembly (bottom). The initial dimensions of both assemblies are identical: only the initial
microstructure differs between these two intermittent cases. The frames are taken at the
following times: t = 0s, t = 0.30s, t = 0.60s, t = 0.90s, t = 1.20s and t = 2.00s.

are considered.
Figure 3.6 shows the experimental and numerical flow regime maps with

respect to the initial length L0 and initial height H0. Each case was repro-
duced three to five times in order to assess its intermittence. In this figure,
the transitions between flow regimes are not sharp and the purpose of these
flow regime maps is to report qualitative trends rather than to provide accu-
rate flow transitions. In our numerical simulations, the transition from the
repeatable regimes to the intermittent regimes differs from the experiments
at high aspect ratios. Indeed, it is found numerically that tall columns of
initial height H0 greater than 20 cm always result in an avalanche, while
experimentally some cases were observed to be intermittent − for instance
(L0, H0) = (12, 25). This can be explained by a slightly inaccurate choice of
parameters in table 3.1, and a discussion on the choice of tangential friction
parameters is provided in Section 3.4.3. Nevertheless, we note that the nu-
merical flow regime map agrees reasonably well with the experimental map,
in particular in the region where buckling collapses occur as well as on the
transition between the repeatable regimes and the intermittent regimes at
low aspect ratios.

Aside from the intermittent regimes, we also recover the collapsed regime
and the fractured regime that have already been reported for systems of
spherical particles [14, 118]. In the collapsed case, an avalanche occurs over
the whole length of the granular assembly, resulting in a final height H∞
lower than the initial height H0. In the fractured case, the initial length L0

of the granular assembly is large enough such that some particles located to
the left of a fractured line are not disturbed by the avalanche. In a fractured
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3.3. Experimental and numerical results

(a) Experiments (b) Simulations

Figure 3.6: Flow maps from (a) experiments and (b) simulations. Each cross represents
an experiment or a simulation. Two flow regimes are identified: repeatable and intermit-
tent; and two collapse behaviors are reported: top-driven (observed in all configurations)
and buckling (observed only for narrow columns).

case, the final height H∞ of the granular assembly equals its initial height
H0.

3.3.2 Macroscopic measurements

Run-out distance and height ratios

The run-out distance L∞ and the final height H∞ of the avalanches are
two easily accessed quantities that can be used to quantify to what extent
avalanches of non-convex particles differ from avalanches of convex particles,
as well as to what extent our simulations agree with our experiments. Figure
3.7 shows that the non-dimensional run-out distance (L∞ − L0)/L0 as a
function of the initial aspect ratio H0/L0 follows the same linear trend in the
experimental and numerical cases. The error bars of the experimental and
numerical data points largely overlap, and the overall agreement between
our simulations and our experiments is very satisfactory. This figure also
includes experimental data from Lajeunesse et al. [118] and Balmforth et al.
[14], who carried out similar experiments with spherical and grit particles,
respectively. Figure 3.7 shows that, surprisingly, a very similar power law
of the form K(H0/L0)

n is followed by spherical and cross-shaped particles,
even though the avalanche dynamics is very different. The power coefficient
n seems to be approximately equal to 1 for our cross-shaped particles, as
found by Lajeunesse et al. [118] and Balmforth et al. [14] for spheres or grit
particles. The transition from n ≈ 1 to n ≈ 2/3 around H0/L0 = 3 reported
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3.3. Experimental and numerical results

Figure 3.7: Non-dimensional runout distance (L∞ − L0)/L0 as a function of the initial
aspect ratio H0/L0. Error bars are depicted with vertical segments.

by Lajeunesse et al. [118] for spheres is not very visible for our cross-shaped
particles in Figure 3.7. However, the analysis of the center of mass of the
assembly reveals very clearly this slope transition around H0/L0 = 3 and
indeed agrees with the measurements of [118] who considered initial aspect
ratios of up to 20. The interested reader is referred to Appendix B.1 for
more details on this analysis. We also note that the prefactor K is slightly
lower for our cross-shaped particles as a signature of the shape and of the
corresponding avalanche dynamics. Moreover, for H0/L0 ≳ 4, the run-out
distance of all particle shapes, i.e., the spheres of Lajeunesse et al. [118], the
grit particles of Balmforth et al. [14] and our cross-shaped particles, almost
matches, indicating that in more inertial regimes, the shape matters less.

Likewise, figure 3.8 shows the non-dimensional height ratio H0/H∞ as a
function of the initial aspect ratio H0/L0 for our simulations and our exper-
iments, and also includes data obtained with grit particles by Balmforth et
al. [14]. Again, our simulations agree very well with our experiments, and
surprisingly again the cross-shaped particles follow the same trend as the
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3.3. Experimental and numerical results

Figure 3.8: Non-dimensional height H0/H∞ as a function of the initial aspect ratio
H0/L0. Error bars are depicted with vertical segments.
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grit particles, despite fundamentally different dynamics.

Characteristic time of collapse

We quantitatively compare the time evolution of avalanches of crosses and
spheres. Figure 3.9a shows the average non-dimensional translational parti-
cle velocity ṽavg = vavg/

√
gHi versus the non-dimensional time τc =

√
Hi/g

for avalanches of spherical particles and cross-shaped particles with an ini-
tial aspect ratio of 3.2. Small systems − 3200 spheres or 1000 crosses −
and large systems − 15000 spheres or 3000 crosses − are considered, and for
each case three simulations with different initial microstructure are plotted
in order to show reproducibility. On the one hand, the time evolution of
the velocity of small and large systems of spherical particles appear to be
very reproducible, as the curves for each case superimpose very well. More-
over, the small and large systems behave similarly, with the average velocity
reaching its maximum of 35% to 39% of v0 =

√
gHi at t = τc and dropping

below 5% of v0 at t ≈ 4τc. On the other hand, the velocity of cross-shaped
particles is far less reproducible from one run to another. The small systems
of crosses seem to follow a trajectory close to that observed with spheres,
but delayed by two to four time units τc, with a maximum velocity of 34%
to 39% of v0. However, the large systems of crosses exhibit a very different
trend: for each run the curve is flatter, its maximum is comprised between
18% and 22% of v0 and occurs at t ≈ 2.5τc and the average velocity drops
below 5% of v0 at t ≈ 10τc. Figure 3.9b and figure 3.9c show snapshots of
small and large systems of crosses at t = 3τc. Particles are coloured by the
norm of their translational velocity. The main difference in the dynamics
of the collapse of small and large systems of crosses is that small systems
are narrow enough − less than the size of two particles − for the whole
column to bend forward during the top driven collapse. For instance, we see
in figure 3.9b that the highest point of the column is located far away from
the left wall, close to the previous location of the gate. In contrast, large
systems − of width greater than the size of three particles − do not bend
forward during the top-driven collapse: figure 3.9c shows how the highest
point of the granular assembly is close to the left wall. Thus, the rate of
particles flowing down the granular column is lower than that of smaller
systems where the whole column bends forward. As a result, the maximum
average velocity is lower and the collapse time is greater for large systems
of crosses than for small systems of crosses.

A more striking time-dependent behavior inherent to entangled particles
is the case of staggered collapses, which have been observed experimentally
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(a)

(b) (c)

Figure 3.9: (a) Comparison of the average non-dimensional translational particle velocity
versus non-dimensional time for systems of spherical and cross-shaped particles in systems
of initial aspect ratio a = H0/L0 = 3.2. (b-c) Snapshots of the collapse of a small (b) and
large (c) system of crosses at t = 3τc, coloured by the norm of their translational velocity
from dark blue (smallest) to red (largest). Small system: 3200 spheres or 1000 crosses;
Large system: 15000 spheres or 3000 crosses.
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staggered collapse

regular collapse

Figure 3.10: Comparison of the average non-dimensional translational particle velocity
versus non-dimensional time for a staggered collapse (solid line) and a regular collapse
(dashed line) in the case of an initial aspect ratio a = H0/L0 = 1.75. The only difference
between the two collapses is the random initial packing.

and numerically to appear in the case of initial aspect ratios corresponding
to the intermittent and fractured regimes. In an unrepeatable way, some
initial microstructures lead to collapses that come to nearly a halt for a
few τc before continuing until fully avalanched, as shown in figure 3.10. It
is important to note that the two curves in figure 3.10 correspond to two
identical simulations with the exception of different initial microstructures.
A partial staggered collapse is often observed for those regimes, i.e., the
collapse is three dimensional and one region in the width direction halts
its avalanche for up to a few seconds − a very long time for these kind of
granular systems − before fully collapsing.

This quantitative analysis in time suggests that the free fall characteristic
time τc, although relevant in the case of avalanches of spherical particles
[14, 118], does not describe collapses of entangled cross-shaped particles
well. As such, defining a relevant time scale τc for granular collapses of
entangled cross-shaped particles appears to be a complex matter and is left
for future studies.
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3.3.3 Microstructure analysis

(a) (b)

Figure 3.11: Visualization of the contact network in a granular column composed of
spheres and crosses. Each segment links the centers of mass of two contacting particles, and
its color and width vary according to the magnitude of the total contact force magnitude
Fc divided by the average contact force magnitude ⟨Fc⟩. In (a) all contacts are shown,
while in (b) only the contacts associated with a force magnitude greater than five times
the average force magnitude are plotted.

We now extract information about the contact force network from our
DEM simulations. This type of information cannot be measured experi-
mentally. Figure 3.11 shows the contact network for a column of 15,000
spheres (41,971 contacts in total) and a column of 12,000 crosses (98,939
contacts in total). The corresponding average coordination number is there-
fore 2 · 41, 971/15, 000 ≈ 5.6 for spheres and 2 · 98, 939/12, 000 ≈ 16.5 for
crosses. The much larger average coordination number of crosses compared
to that of spheres is expected as the arms of the crosses allow to reach more
neighbouring particles located farther away. In figure 3.11, each segment
represents a branch vector, i.e., each segment links the centers of mass of
two contacting particles, and is colored according to Fc/⟨Fc⟩ where Fc is the
contact force magnitude and ⟨Fc⟩ is the average contact force magnitude in
the whole granular assembly. While it is not convenient to interpret figure
3.11a where all the branch vectors are shown, we plot in figure 3.11b the
branch vectors associated to a contact force magnitude that is larger than 5
times the average contact force magnitude. Figure 3.11b clearly highlights
that the cross-shaped particle assembly features many more and more ho-
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(a) Linear scale for Fc/⟨Fc⟩ (b) Log scale for Fc/⟨Fc⟩

Figure 3.12: Probability density function (PDF) of the contact force magnitude Fc

divided by the average contact force magnitude ⟨Fc⟩ just before the gate is opened, in the
cases of assemblies of crosses (black) and spheres (blue).

mogeneously distributed large forces than the spherical particle assembly.
Indeed, figure 3.11 shows that large contact forces in the spherical particle
assembly are located along what is commonly referred to in the literature
as a backbone, i.e., a sub-network that features a small number of connected
large contact forces, also called force chains, and that supports most of the
external stress [164]. This prominent backbone sub-network is not visible in
the cross-shaped particle assembly.

Probability density functions of contact forces

We analyze the probability density function (PDF) of the contact force mag-
nitude Fc divided by the average contact force magnitude ⟨Fc⟩ in our gran-
ular assemblies. In figure 3.12, we compare the PDFs of Fc/⟨Fc⟩ just before
opening the gate in granular assemblies of crosses to that in granular assem-
blies of spheres. Each solid line corresponds to the average over N simula-
tions and each dot represents a data point, i.e., a contact force magnitude
in one of the N simulations. We take Nspheres = 30 and Ncrosses = 60. In fig-
ures 3.12a and 3.12b, the average PDF of Fc/⟨Fc⟩ in the assembly of crosses
is considerably broader than that in the assembly of spheres. The largest
Fc/⟨Fc⟩ in the assembly of crosses is 32 while it is only 14 in the assembly of
spheres. Forces in the range Fc/⟨Fc⟩ ⪆ 4 are more probable in the assembly
of crosses than in the assembly of spheres, in accordance with our qualitative
observations of figure 3.11b. While the large forces are more homogeneously
distributed in the assembly of crosses than in the assembly of spheres (no
prominent backbone, see Section 3.3.3), considering the whole force range
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and the coordination number indicates that assemblies of crosses are more
connected but also less homogeneous. Figures 3.12a and 3.12b agree well
with previous works published in the literature. Saint-Cyr et al. [177] also
reported broader PDFs of Fc/⟨Fc⟩ in the case of non-convex particles com-
pared to the case of disks in their 2-dimensional study of sheared particles
with various degrees of concavity. Estrada et al. [51] studied disk-shaped
particles and modeled their entanglement by inhibiting rotational motion.
Their PDFs of Fc/⟨Fc⟩ (see figures 14 and 15 in their study) are very sim-
ilar to our PDFs plotted in figures 3.12a and 3.12b. A notable difference
with [51], however, is that the force network of their entangled granular as-
semblies qualitatively shows a well defined backbone while our assemblies
of cross-shaped particles do not, as previously discussed in Section 3.3.3.
We attribute this discrepancy to two factors: (i) no gravity in [51] versus
gravity in our simulations; therefore our simulations cannot show “floating
particles”, i.e., particles with no contact with any neighbouring particle, that
promote the formation of a backbone and (ii) our high aspect-ratio particles
not only reach neighbours located farther away than their disk-shaped coun-
terpart, but their non-convexity allows two particles to contact at multiple
points, therefore dividing a branch vector into several weaker branch vectors.
To summarize, the PDFs of Fc/⟨Fc⟩ shown in figures 3.12a and 3.12b, the
absence of backbone in figure 3.11b together with the observed intermittent
regime which highlights the high stability of assemblies of crosses show that
assemblies of crosses do not necessitate the presence of a backbone to resist
an exerted stress load. In a broader sense, this conclusion suggests that
in granular assemblies of entangled particles both the diffuse sub-network
of relatively large contact forces as well as the sub-network of small forces
play an important role in resisting the exerted stress load [51]. We plot in
Appendix B.2 similar comparisons of PDFs of Fc/⟨Fc⟩ for: (i) assemblies of
crosses about to collapse in a top-driven fashion versus in a buckling fash-
ion, and (ii) assemblies in the intermittent regime about to collapse versus
remaining stable. In both cases, the PDFs of Fc/⟨Fc⟩ superimpose very
well, suggesting that the distribution of the contact force magnitude is not
relevant in determining the collapse outcome.

Fabric anisotropy

In granular dynamics, fabric anisotropy refers to the preferred directions

of branch vectors
−−−→
C1C2 connecting the centers of mass of two contacting

particles. While the branch vector direction coincides with that of the nor-
mal contact force in the case of spheres, it does not in the general case
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Figure 3.13: Definition of the branch vector projected onto the vertical xz-plane and of
the angle θ it forms with the horizontal direction.

of non-spherical particles. In the following, we restrict the analysis to the
branch vectors projected onto the xz vertical plane normal to the width of
the channel, and we define the angle θ formed by the horizontal direction

x and the projected branch vector
−−−→
C1C2

′, as shown in figure 3.13. Figure
3.14 compares the average fabric anisotropy of assemblies of spheres, crosses
and coin-shaped particles. The collapse behavior of the assemblies of crosses
considered in figure 3.14 belongs to various regimes: top-driven, buckling,
intermittent-stable and intermittent-collapsed. Undesirable wall effects are
minimized as follows: (i) the length L0 of the initial column is chosen to be
greater than 5 times the particle circumscribed diameter (except in figure
3.14b where the aspect ratio is required to be very high in order to observe
buckling collapses as shown in figure 3.6) and (ii) contacts with the walls
are excluded from the analysis.

Figure 3.14a reveals that the preferred direction of the branch vectors in
the assembly of spheres is the vertical direction, as expected for a random
loose packing of spheres under gravity. Conversely, the preferred direction
of the branch vectors in the assembly of crosses is the horizontal direction,
i.e., orthogonal to the direction of gravity. This result is simply due to
the large aspect ratio of crosses and the fact that the stable position of
a cross onto a horizontal plane is to lay flat and align its arms with the
horizontal direction in order to minimize its gravitational potential energy.
Consequently, in the absence of wall effects, the average angular position of
crosses has a tendency to get closer to 0◦ and 180◦ as the aspect ratio of the
cross-shaped particles increases. This can be generalized to other shapes
with a large aspect ratio. To support this claim, we also plot in figure
3.14a the fabric anisotropy of coin-shaped particles with a thickness and
a circumscribed diameter identical to those of crosses. Since these convex
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Figure 3.14: Average fabric anisotropy of various granular assemblies prior to the open-
ing of the gate. (a) Comparison of the fabric anisotropy of spheres (averaged over 30
simulations) to crosses (averaged over 60 simulations) and coins (only one simulation
shown) − the curve for coins has been scaled down for readability. (b) Comparison of
the fabric anisotropy of crosses about to collapse in a top-driven fashion (averaged over
50 simulations) to crosses about to collapse in a buckling fashion (averaged over 6 sim-
ulations). (c) Comparison of the fabric anisotropy of crosses in the intermittent regime
about to collapse (averaged over 18 simulations) to remaining stable (averaged over 26
simulations).
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coin-shaped particles cannot entangle with neighbouring particles the way
crosses do, their fabric anisotropy plotted in red in figure 3.14a reveals an
even stronger tendency to lay flat and align with the horizontal direction
than that of crosses.

Figure 3.14b shows the fabric anisotropy of assemblies of crosses leading
to buckling collapse and to top-driven collapse. In this case the preferred
direction of the branch vectors is vertical both in the buckling case and in
the top-driven case. This result is simply a consequence of the rather small
L0 considered in these cases in order to be able to investigate large initial
aspect ratio of the column while keeping the total number of particles in
the system at a tractable level. In narrow columns with significant wall
effects, crosses are constrained by the lateral walls to align their arms with
the vertical direction. Disappointingly, the fabric anisotropy of assemblies
of crosses leading to buckling collapse and of assemblies of crosses leading
to top-driven collapse almost perfectly overlap. We also compare the fabric
anisotropy of assemblies in the intermittent regime about to collapse (named
intermittent-collapsed) to remaining stable (named intermittent-stable) in
figure 3.14c. This plot does not reveal any marked difference either. The
intermittent-collapsed fabric anisotropy and the intermittent-stable fabric
anisotropy almost perfectly overlap, as in the comparison between buckling
collapse and top-driven collapse.

At that stage, we conclude that the fabric anisotropy and the additional
PDFs of Fc/⟨Fc⟩ presented in Appendix B.2 do not seem to be proper de-
scriptors of the microstructure able to reveal salient features that could
distinguish the various collapse behaviors: top-driven versus buckling, and
intermittent-stable versus intermittent-collapsed. In Section 3.4.1, we at-
tempt to distinguish intermittent-collapsed from intermittent-stable through
examining the average coordination number and the Janssen effects on the
walls.

3.4 Discussion

3.4.1 Analyzing the intermittent regime with DEM
simulations

In this section, we investigate the intermittent regime using our DEM sim-
ulations. Figure 3.15 presents a 3-dimensional view of the force network
of configurations that (a) collapse and (b) remain stable. No qualitative
discrepancy in the contact density nor the force magnitude can be visually
noted. We could speculate that in the stable case (b) the largest contact
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(a) (b)

Figure 3.15: Visualization of the force network of two intermittent simulations. Each
segment links a contact point to the center of mass of a particle, and is colored according
to the magnitude of the normal component of the contact force. (a) The opening of the
right gate leads to a granular collapse. (b) The opening of the right gate leads to a stable
assembly.

force is located close to the gate, possibly reinforcing the stability of the
granular assembly in this area. However, this does not hold for two reasons:
(i) this particular stable case also remains stable when the left gate opens;
and (ii) some asymmetrical assemblies similar to (b) result in granular col-
lapses. Similarly, we could note the small difference in the maximum force
magnitude between cases (a) and (b), but this maximum force magnitude is
reversed for other simulations, and cannot be used as a determinant factor
to predict a granular collapse.

Using a more systematic approach to investigate intermittence, we com-
pute for each case a number of quantities such as the average coordination
number, the Janssen effect on the walls, as well the number of contact points
with the bottom wall, with the lateral walls and with the gate. The raw data
is presented in appendix B.3. Surprisingly again, no trend is found in any of
those average quantities, whether the whole granular assembly is considered
or whether the analysis is restricted to subregions such as the region close to
the gate and the region close to the top of the gate. We speculate that the
stability of the assembly is governed by finer properties of the force network
such as local clusters − i.e., subregions of densely entangled particles that
are not well connected to the rest of the system − or the presence of force
cycles, which tend to increase rigidity of granular assemblies. Investigating
granular assemblies from the perpective of network analysis is growing in
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1

Figure 3.16: Snapshots of simulations with and without memory in the contact model.
Top: with memory. Bottom: without memory. The frames are taken at the following
times: t = 0s, t = 0.15s, t = 0.30s, t = 0.45s, t = 0.60s, t = 0.75s, t = 0.90s, t = 1.05s and
t = 3.00s.

interest [144], but it remains a difficult task and it is in most cases still
restricted to systems of disk-shaped − sometimes spherical − particles. It is
far beyond the scope of this thesis to investigate a reliable network analysis
for three-dimensional, high-aspect ratios and non-convex particles.

3.4.2 On the importance of the contact model with memory

Since the implementation of the contact model with memory is quite tedious
but necessary, it is interesting to compare the results obtained with and
without memory. Figure 3.16 shows the qualitative discrepancies of two
simulations with memory (top row of images) and without memory (bottom
row of images) and with the same initial microstructure. When the memory
term is included in the contact model, we can see that the height of the
column is decreasing because particles fall off the top of the pile. Conversely,
when the memory is not taken into account in the contact model, the height
of the column decreases faster while the number of particles released from
the top is lower. Indeed, without memory the tangential friction vanishes
where the relative velocity approaches zero: as a result the granular column
slowly deforms and overpacks at the bottom of the pile, while it should
remain static in that region of space. This unphysical behavior was noted
by Govender et al. [65]: in their study (figure 16), they comment on the
slow deformation of a simulated arch of non-convex particles and note that it
does not match experimental data, and that it even leads to the unphysical
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discharge of particles. In the light of figure 3.16, we can confidently state that
this unphysical deformation is the result of the absence of a memory term in
the tangential friction force in their simulations. Figure 3.16 demonstrates
that this memory term is of tremendous importance in order to numerically
reproduce static configurations or dynamic configurations that include static
subsystems.

3.4.3 On the choice of contact model parameters for
non-spherical bodies

The tangential contact model parameters listed in table 3.1 are not obtained
via the procedure provided in Section 2.4.2. This is because for reasonable
values of the normal and tangential energy restitution coefficients en and
et, the avalanche never occurs and the pile of particles remains stable at all
times for all aspect ratios. We discuss below why this procedure did not give
satifactory results when applied to our system of cross-shaped particles.

First, we span a wide range of values for the tangential parameters and
report the type of behavior that arises. Values of kt range from 101 to 106

N/m and values of γt = ηt/(2mij) range from 100 to 105 s−1. The results
are presented in figure 3.17. We can see that only a narrow region of the
space formed by possible values of kt and γt leads to a physical output of
the DEM simulations. This region corresponds to kt ≈ 3 × 102 N/m and
γt ≈ 103 s−1.

Then, we observe from Eq. (2.21−2.24) that once a maximum overlap
distance δmax is set, the only two variables the tangential parameters kt and
ηt are depending on are en and et. For this analysis we are interested in
orders of magnitude only, therefore we assume that the distances between
the contact point and the center of mass of the cross-shaped particles are
always the same and are equal to the radius of the sphere of the same
volume Rs. We also denote by Is the moment of inertia of the sphere of
equal volume. Figure 3.18 shows plots of kt and γt for en and et living
in (0 : 1). This figure shows how kt tends to zero extremely slowly when
en → 0. From Eq. (2.21) and Eq. (2.23) we deduce the behavior of kt for
en → 0 and et → 1:

kt ∼
en→0
et→1

C

ln(en)2
with C =

(πvmax/(δmaxe))
2

1
mij

+ 2R2
s

Is

(3.1)

In our case, since C ≈ 2 × 105 N/m, this implies that en must be of the
order of 10−11 to reach kt ≈ 3 × 102 N/m. Such a low value of the energy
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Figure 3.17: Variation of the flow behavior with respect to the tangential parameters.
Each dot corresponds to a simulation with specific tangential parameters (kt,γt). Region
2 correctly reproduces experiments. Region 1 leads to avalanches that collapse like convex
particles, i.e., the base of the pile drives the motion. Region 3 leads to fully entangled
systems that do not collapse.

Figure 3.18: Surface plots of the tangential parameters kt and γt = ηt
2m

for en and et
varying from 0 to 1.
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restitution coefficient is of course strongly unphysical, since it would imply
that a particle impacting a plane bounces back with a velocity 1011 times
smaller than the impact velocity.

At this point, we recognize that even though this procedure has been
successfully applied to spherical shapes and ellipsoids [181], it cannot be
used for particle shapes that differ significantly from spheres, such as the
non-convex and angular particles considered in this study. To the best of
our knowledge, no procedure has been successfully derived to determine me-
thodically the tangential contact parameters of complex-shaped particles. In
fact, Landauer et al. [119] face the same difficulties in choosing meaningful
friction parameters and conclude that “it is impossible to use DEM simula-
tions as a plug-and-play tool to predict particle packing and flow properties”.
As a result, the community keeps relying on calibration studies or on trial
and error. Investigating further a reliable, physically-based method or pro-
viding calibration guidelines [172] to set contact model parameters in DEM
simulations of arbitrary-shaped particles would be of great interest in future
works.

3.4.4 Analogy with other stable granular assemblies

Entanglement is not the only mechanism that can lead to stable piles, and
such stable granular columns have been reported in the case of cohesive
particles [1] and fluid-saturated particles [24]. In [1], Abramian et al. con-
duct discrete and continuous two-dimensional simulations of the slumping
of a column of cohesive particles and observe stable and collapsed regimes.
In [24], Bougouin et al. examine the problem of the slumping of a fluid-
saturated column of particles. In their study, varying the “column” Bond
number, that compares gravity to capillary effects, also leads to stable and
collapsed regimes. The authors carry out a dimensional analysis that cap-
tures very well the transition between the observed regimes. It is important
to stress that in order to observe stable granular assemblies, a stabilizing
mechanism at the particle scale is required. While in the case of Bougouin
et al. (respectively Abramian et al.) the capillary force (respectively the
cohesive force) plays the role of the stabilizing mechanism, in our study the
stabilizing effect comes from the inhibition of particle displacement resulting
from the entanglement of the particles with their neighbours. In a future
work, we might attempt to design a column Bond number for entangled
granular media and carry out a dimensional analysis similar to that of [24]
in order to capture the transitions between the observed regimes. As this
column Bond number would be the ratio of the gravitational force over the
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stabilizing force, it would require to include a measure of the aforementioned
displacement inhibition due to the presence of entangled neighbours. In a
first approximation, this column Bond number could be a function of a mean
entanglement number that would depend on the geometric properties of the
particles. This entanglement number may be defined following the approach
of Gravish et al. [66], i.e., as the number of neighbours crossing a portion of
a plane specific to the shape of the considered particles − in the case of our
cross-shaped particles, it would likely be a disk of diameter Lp and located
in the plane formed by the arms of the crosses. Then, the entanglement
number would be averaged over all particles in the column and treated as a
particle feature in the dimensional analysis.

3.5 Conclusion

In this chapter, we performed granular dam break experiments and simula-
tions of angular non-convex particles with high aspect ratios. We reported
a wide range of flow regimes and dynamic behaviors, such as the inter-
mittent regime and two collapsing dynamics: the top driven collapse and
the buckling collapse. Notable differences in the collapses of the consid-
ered cross-shaped particles with respect to spheres include a strong three-
dimensionality of the avalanche, the absence of repeatability of most behav-
iors, the presence of staggered collapses and the irrelevance of the time scale
of free fall τc =

√
H0/g. Surprisingly, we showed that despite fundamentally

different dynamics, macroscopic quantities of our avalanches of non-convex
particles such as the run-out distance and the final height of the pile agree
reasonably well with results from the literature obtained with spherical par-
ticles. We also showed that our numerical simulations reproduce every flow
behavior observed experimentally and we obtained an excellent quantitative
agreement between our simulations and our experiments. In particular, we
emphasized that the use of a contact model with memory is critical as soon
as there is a sub-system in a pseudo static state − in our case, the bottom
part of the granular pile. Futures studies could investigate avalanches of
very large systems of entangled particles (of the order of 106 particles) in
order to reduce the uncertainty on the measured run-out distance and final
height.

Using our validated simulations, we investigated the contact force mag-
nitude distribution and the fabric anisotropy in the granular assemblies be-
fore opening the gate. These data cannot be measured experimentally and
is accessible via numerical simulations only. Our analysis of the average
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probability density functions (PDFs) of the scaled contact force magnitude
revealed that the distribution of forces in the case of cross-shaped particles
is considerably broader than in the case of spheres and that the network of
strong forces does not form a backbone in the case of cross-shaped parti-
cles. Our attempt to discriminate the top-driven collapse from the buckling
collapse, as well as the intermittent-stable regime from the intermittent-
collapsed regime by means of PDFs of contact force magnitude and fabric
anisotropy was not conclusive, suggesting that these collapse behaviors are
governed by other properties of the granular assembly that at this stage
we could not identify. Pursuing our investigation of the stability of gran-
ular assemblies in the intermittent regime, we found that quantities such
as the average coordination number, the average number of contact points
with the walls and with the gate as well as the Janssen effect on the walls
do not allow either to predict if an intermittent structure is about to col-
lapse. This suggests that whether the structure collapses or remains stable
is governed by mesoscale properties of the force network, such as local clus-
tering. Future studies could investigate the mesoscale structures of granular
networks of non-spherical particles and their implications on the dynam-
ics of the system, as well as attempt to define an entanglement number
as in [66] and investigate its relevance in describing the various observed
behaviors. Finally, we discussed the choice of model parameters of our nu-
merical simulations. We found that previously developed procedures used
to set the tangential model parameters of spherical and ellipsoidal particles
did not lead to physical behaviors when applied to our systems of angular
non-convex particles, resulting in a significant amount of time and resources
spent to set the model parameters from trial and error. We emphasize the
need for a reliable, physically based routine or calibration guidelines to set
model parameters in a reproducible way, not only for spherical particles but
also for particles of arbitrary shape.
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Part II

Immersed elastic capsules
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Chapter 4

A Cartesian-octree adaptive
front-tracking solver for
immersed elastic capsules

4.1 Introduction

The numerical study of membrane-enclosed fluid objects, or capsules, has
seen tremendous interest over the past three decades due to the wide range of
applications in the biomedical and bioengineering world. Indeed, numerical
simulation of capsule dynamics in viscous flows is crucial to better char-
acterize and understand blood flow through capillary microcirculation and
develop applications such as targeted drug delivery [43], migration of cancer-
ous leukocytes through the microvascular network [18, 161] and cell sorting
and cell characterization in microfluidic devices [22, 96]. In particular, the
latter application has the potential to speed-up labour-intensive diagnosis
procedures or to extract relevant components of biofluids. For instance
intertial centrifugation in spiral-shaped microchannels has been shown to
efficiently and accurately segregate cells based on their size, and could be
applied to perform non-destructive blood plasma extraction [52, 55, 192].

The study of capsules from a mechanical point of view was paved in
1981 by the pioneering analytical work of Barthès-Biesel & Rallison [21],
who derived from the thin-shell theory a time-dependant expression for the
deformation of an elastic capsule in a shear flow in the limit of small defor-
mations. A decade later, Pozrikidis went beyond the assumption of small
deformations, using the Boundary Integral Method (BIM) to investigate fi-
nite deformations of elastic capsules in a shear flow [156, 170]. This work was
quickly followed by Eggleton & Popel who simulated spherical and bicon-
cave capsules in shear flows using the Front-Tracking Method (FTM) [49].
Capitalizing on the advantages of the BIM − such as a lower computing cost
compared to the FTM, and the ability to simulate true Stokes conditions
− Pozrikidis investigated the bending resistance of capsules and proposed a
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simplified bending model for biological membranes valid for small deforma-
tions [157], leading to the first numerical simulation of an RBC based on the
thin-shell theory [158]. The work of Pozrikidis was later extended by Zhao
et al., who proposed a BIM able to simulate RBCs in complex geometries
with up to 30% volume fraction [219]. In the 2000s, Barthès-Biesel and
Lac also used the BIM and studied finite deformations of capsules devoid of
bending resistance: they considered the effect of the membrane constitutive
law and exhibited buckling instabilities [114] as well as the dynamics of two
interacting capsules in a shear flow [115].

Despite the major success of the BIM to simulate capsules and biologi-
cal cells, the FTM is still being developed. Indeed, while the FTM is more
computationally intensive than the BIM because it necessitates meshing the
whole 3D fluid domain, and while it can require very small time steps to sat-
isfy stability conditions depending on the considered membrane forces; the
FTM can handle inertial regimes, thus allowing to examine a wider range
of applications. As such, Bagchi uses the FTM to perform two-dimensional
simulations of several thousand RBCs in a shear flow [12], allowing the study
of RBC interactions at the mesoscale. In the next years, Doddi & Bagchi
[45] and Yazdani & Bagchi [212–214] develop respectively three-dimensional
implementations of the elastic membrane stress and of the Helfrich’s bend-
ing stress for biological membranes, the latter not being limited to small
deformations as was the case for the formulation of Pozrikidis. The ability
to consider finite Reynolds numbers allowed Doddi & Bagchi to extend the
work of Lac et al. on capsule interactions to intertial flows [44]. Their frame-
work was later extended to complex geometries by Balogh & Bagchi [15],
enabling them to study the dynamics of hundreds of RBCs in a microvas-
cular network with a hematocrit (volume fraction of RBCs) of 30% [16].
Another variant of the FTM is to use a Lattice-Bolztman fluid solver rather
than the traditional PDE-based Navier-Stokes solver: this can bring signif-
icant performance improvement especially at low Reynolds number where
the Lattice-Boltzman Method (LBM) performs well. For instance, Li &
Sarkar extend the work of Barthès-Biesel and Lac on the instabilities of
elastic capsules in shear flows using an FTM-LBM solver [121], and Zhang
et al. describe a similar framework able to simulate RBCs [216], includ-
ing cell-cell aggregation phenomena [217]. More recently, Ames et al. [7]
harnessed the performance improvements of GPUs and demonstrated an
impressive 17 million RBCs simulated in a microvascular network using a
similar FTM-LBM framework.

Other methods to simulate biological capsules and vesicles include the
RBC model of Fedosov et al. [54]. In the work of Fedosov, the RBC mem-
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brane mechanics is not governed by the thin shell theory but rather by a
coarse-grained molecular dynamics model. The membrane of the RBC is
discretized, with each edge representing several nonlinear springs which cor-
respond to elastic and viscoelastic properties of the membrane of the RBC.
The model parameters are found for an extremely fine mesh of over 27000
nodes, where the lengths of the edges correspond to that of biological spec-
trins. Yet, in Fedosov’s model practical RBC simulations are conducted
with different model parameters which are intended to display the same
mechanical behavior as that obtained with a fine mesh, but using a num-
ber of nodes orders of magnitude lower. These coarse-grained mechanical
properties of the membrane are shown to lead to results which accuracy
lies within the range of experimental measurement errors for the specific
cases considered. However the range of validity of this coarse-graining step
is not obvious and the spatial convergence can be non-monotonous or even
not exist (see the transverse diameter plot in figure 1 in [54]), indicating
to use this model with care. A last approach to capsule simulations is to
adopt a fully Eulerian framework, where the membrane is not discretized
with Lagrangian nodes, edges and faces. Instead, the capsule configuration
is described using the Eulerian grid employed to solve the Navier-Stokes
equations. Removing the need of a Lagrangian grid is a desirable descrip-
tion as the IBM can reduce the spatial and temporal accuracies to first order
if no special treatment is implemented. In the Eulerian capsule description,
Volume-Of-Fluid (VOF), level-set or phase-field methods can be utilized to
track the position of the membrane, similar to what is done in the context of
fluid-fluid interfaces [25, 78, 153, 193]. If the considered membrane mechan-
ical behavior is independant of the past configuration of the membrane, for
instance if there is no resistance to shear and high resistance to bending, the
membrane forces can be computed using techniques developed for surface-
tension flows: the local curvature can be computed using height-functions in
the case of a VOF description, or by numerically differentiating the level-set
or phase-field function near the interface [37]. However, in most biological
applications the membrane properties do depend on the past membrane con-
figurations due to its elastic behvior. In such cases a quantity representing
the membrane stretch needs to be initialized and advected in the vicinity of
the membrane, for instance the left Cauchy-Green deformation tensor. Ii et
al. have demonstrated that this approach is possible and scalable [92–94],
although more comparisons with the FTM are needed in order to evalute the
performance and the accuracy of the Eulerian methods, especially for long-
lasting simulation. An in-depth description of the fully Eulerian method to
simulate elastic capsules is presented in Chapter 6.
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Concomitent to these developments of capsule simulations, the IBM
gained great popularity in the particle-laden flows community [26, 105, 194],
and in the past two decades some adaptive IBM have been proposed in cases
of immersed solid particles. In this context, Roma et al. [174] present a
two-dimensional adaptive IBM implementation where the Adaptive Mesh
Refinement (AMR) is achieved by means of overlapping rectangles − or
“patches” − of finer grid cells in the regions of interest, i.e. where higher
accuracy of the flow field is needed. This method was later improved and
proved second-order accurate by Griffith et al. [68] and Vanella et al. [200].
Previously, Agreasar et al. [3] had used a non-patched adaptive FTM-IBM
method in order to simulate axisymmetric circular cells. Their IBM imple-
mentation did not use Peskin-like regularized Dirac delta functions: instead
the Lagrangian grid on the membrane communicates with the background
Eulerian grid via an area-weighted extrapolation. More recently, Cheng &
Wachs [31] used the IBM coupled with an LBM solver to achieve adaptive
simulations in the case of a single rigid sphere in various flow conditions.

The goal of this chapter is to present an efficient framework to study the
dynamics of dilute suspensions of capsules in complex geometries, not lim-
ited to non-inertial regimes. As the BIM cannot be used at finite Reynolds
numbers, we use the FTM and therefore the whole 3D fluid domain is dis-
cretized. Since a vast range of realistic applications consider geometries of
sizes orders of magnitude larger than the typical size of a capsule, requiring
hundreds of millions to billions of Eulerian grid cells when the Cartesian
grid has a constant grid size, we develop an adaptive FTM solver rendering
achievable to simulate configurations that were previously out of reach with
a constant grid size. We provide the open-source code as part of the Basilisk
platform [80, 150, 152, 153].

The chapter is organized as follows: in Section 4.2 we present the prob-
lem formulation and the governing equations for both the fluid and the cap-
sule dynamics. We describe the implementation of our numerical model in
Section 4.3, emphasizing the finite element membrane model and the FTM
method. Numerous validation cases are shown in Section 4.4, for increas-
ingly difficult configurations: validations are performed by comparing our
computed results against accurate BIM data available in literature when-
ever possible, otherwise against other FTM results. Section 4.5 contains
new results generated with the present method, where the adaptive mesh
capability dramatically improves computational efficiency. In Section 4.6
we summarize our work and discuss the strengths, weaknesses and possible
improvements of the present method as well as future perspectives.
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4.2 Governing equations

4.2.1 Fluid motion

The fluid phase is assumed Newtonian and incompressible: the fluid sur-
rounding and enclosed by the elastic membranes is described using the mix-
ture Navier-Stokes equations:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

(
µ
(
∇u+ (∇u)T

))
+ fb (4.1)

∇ · u = 0 (4.2)

where u is the velocity, p is the pressure, ρ is the constant density and µ is the
variable viscosity field, since we will consider non-unity viscosity ratios λµ =
µi/µe ̸= 1, with µi and µe the internal and external viscosities. fb denotes
the body force containing the membrane elastic and bending force densities
acting on the fluid: fb = felastic+fbending = (Felastic + Fbending) /V , with V
a relevant control volume and Felastic and Fbending the integrated membrane
force densities.

4.2.2 Membrane mechanics

We assume that the lipid-bilayer membrane is infinitely thin: please note
that this is not a strong assumption for most biological cells, as thickness of
the biological membrane (lipid-bilayer) is 5nm while an RBC characteristic
size is 10µm. A biological membrane undergoing deformation responds with
elastic and bending stresses, described with two distinct mechanical models.

The elastic strains and stresses are described using the theory of thin
shells[67]. We summarize this framework here, but the interested reader is
referred to the work of [21] for more details. In this continuous description
of the capsule, we first introduce the projectors P = I − nn and PR =
I − nRnR onto the current and reference (stress-free) membranes shapes,
with I the identity tensor and n and nR the unit normal vectors to the
current and reference membranes configurations, which are both oriented
outward. The membrane strains are described using the surface deformation
gradient tensor Fs, derived from the classical deformation gradient tensor
F as follows:

Fs = P · F · PR. (4.3)

The surface right Cauchy-Green deformation tensor Cs is then defined from
Fs:

Cs = F T
s · Fs. (4.4)
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Let the three eigenvalues of Fs be λ1, λ2, 0 associated with the eigenvectors
t1, t2,n. Then the eigenbasis of Cs is the same as that of Fs, associated
with eigenvalues λ21, λ

2
2, 0. Note that in the stress-free configuration, at the

beginning of a typical simulation, λ1 = λ2 = 1, and Fs = Cs = P = PR.
The above quantities are useful to compute the membrane elastic stress,

which can be expressed using a surface strain-energy function Ws(λ1, λ2):

σi =
1

λj

∂Ws

∂λi
, i ̸= j. (4.5)

In this work, two distinct strain-energy functions corresponding to two
membrane elastic laws are used to describe several types of lipid bilayers in
various conditions:

1. The Neo-Hookean law, used to describe vesicles and artifical capsules,
and which corresponding strain-energy function is

WNH
s =

Es

6

(
λ21 + λ22 +

1

λ21λ
2
2

− 3

)
, (4.6)

where Es denotes the shear modulus.

2. The Skalak law, used to describe the elastic response of RBC mem-
branes, and which strain energy function is

WSk
s =

Es

4

(
I21 + 2I1 − 2I2 + CI22

)
, (4.7)

where the invariants I1 = λ21 + λ22 − 2 and I2 = λ21λ
2
2 − 1 have been

introduced, as well as the area dilatation modulus C preventing strong
area changes and is taken “large” [20, 156] in order to describe the
strong area incompressibility of RBCs. Unless otherwise stated, the
value C = 10 is used in the simulation results presented below.

Once the elastic stress is known, the elastic force exterted by the membrane
onto the fluid is simply

Felastic = ∇ · σ, (4.8)

although we will follow the approach of [29] and use the principle of virtual
work instead of directly computing the divergence of the stress, as explained
in Section 4.3.4.

The bending stresses are described using Helfrich’s bending energy per
unit area EB [77]:

EB = 2Eb (κ− κ0)2 + Egκg (4.9)
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where κ = (κ1+κ2)/2 is the local mean curvature, κg = κ1κ2 is the Gaussian
curvature, and Eb and Eg are their associated bending modulii. κ1 and κ2
are the two principal curvatures at a given point of the two-dimensional
membrane sheet, and κ0 is the reference curvature. Then, the bending
stresses are derived from the total bending energy taking the variational
derivative of Eq. (4.9), to yield the normal bending force per unit area [71]:

Fbending/A = −2Eb(∆s(κ− κ0) + 2(κ− κ0)(κ2 − κg + κ0κ))n, (4.10)

where the operator ∆s is the surface Laplacian − or Laplace-Beltrami op-
erator − defined as ∆s = ∇s · ∇s = ((I − nn) · ∇) · ((I − nn) · ∇), and A
is a relevant control area. Note how Eg has disappeared in the variational
formulation because κg is a topoligical invariant [19, 71].

At this point a parallel with surface tension forces is enlightening: the
bending energy related to surface tension acting on a droplet is proportional
to the area of the interface, and leads to surface tension forces proportional
to the curvature, i.e. to the second derivative of the interface geometry. In
contrast, as stated above the bending energy related to lipid-bilayer mem-
branes is proportional to the curvature, and thus the corresponding bending
force depends on the second derivative of the curvature, i.e. to fourth-order
derivatives of the geometry. As such, the numerical simulations of biologi-
cal capsules subject to bending stresses is a formidable challenge, and the
interested reader is referred to the reviews of [71, 72]. Our approach to
computing the bending force is described in Section 4.3.4, and corresponds
to method E in [72].

4.3 Numerical method

4.3.1 Adaptive Finite Volume solver for the Navier-Stokes
equations

Assuming the body force field fb is known, Eq. (4.1−4.2) are solved using
the open-source platform Basilisk [150]. The viscous term ∇ · (µ(∇u +
(∇u)T )) is treated implicitely using a multigrid Poisson solver [152, 153],
the incompressibility condition is satisfied by the classical projection method
of Chorin [32], and the advection term u · ∇u is solved using the second-
order Bell-Colella-Glaz upwind advection scheme [23]. To this end, the
divergence-free velocity field and the viscosity field are located on cell faces
while a velocity field approximately divergence-free, the pressure field, and
the body force field are all defined on the cell centers.
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Basilisk computes the solution of the Navier-Stokes equations on an oc-
tree grid, which allows to coarsen and refine computational cells throughout
the simulations while keeping a structured mesh. The coarsening and re-
finement of grid cells is implemented using a wavelet-based algoritm: for
the sake of completeness we present here a short overview of the adaptiv-
ity process, and the interested reader is referred to [152, 153, 199] for more
in-depth descriptions. Let f be a field of interest which variations in space
will govern the size of the grid cells. First, f is downsampled onto a lower
level grid by volume-averaging: we call this downsampled field fd. Then,
fd is upsampled back to the original grid using second-order interpolations,
resulting in the downsampled-then-upsampled field fdu. Since f and fdu are
defined on the same (original) grid, the sampling error field ϵi = ∥f i − f idu∥
can be defined in each computational cell i. Finally, ϵi is used to decide if
cell i should be coarsened or refined based on an adaptivity criterion ζ > 0:


ϵi > ζ ⇒ refine cell i

ϵi < 2ζ
3 ⇒ coarsen cell i

2ζ
3 ≤ ϵi ≤ ζ ⇒ leave cell i at its current level.

(4.11)

This wavelet-based algorithm is very versatile as any field of interest can
be used to influence the refinement level of the octree grid. In this study,
the adaptivity is based on the velocity field and on both the presence of
domain boundaries and the capsule membrane. In other words, the fields
of interest that the wavelet adaptivity algorithm considers are: ux, uy, uz,
cs and ξ, where the first three scalar fields are the three components of
the velocity field u, cs is the fluid volume fraction field (in case of complex
geometries), and ξ is a scalar field which varies strongly in the vicinity of the
membrane and is constant elsewhere − see Section 4.3.3 for a definition of
ξ. The refinement criterion ζ can be different for different fields of interest.
In this study, we choose ζ to be very small when applied to cs and ξ in order
to impose the maximum level of refinement in the vicinity of walls and of
the membrane (typically we choose ζ < 10−10); while we found by trial and
error that having ζ of the order of 1% of the characteristic velocity when
applied to ux, uy and uz leads to satisfactory refinement and coarsening of
computational cells in the rest of the fluid domain.

4.3.2 Second-order treatment of solid embedded boundaries

In Basilisk, complex geometries are handled using the sharp, second-order
and conservative embedded boundaries method of Johansen and Colella
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Figure 4.1: A two-dimensional example of an interpolation stencil estimating the bound-
ary flux Φb with second-order accuracy. The gray area denotes the solid, the red line
denotes the solid boundary, and the arrows denote the five face fluxes that are computed
in the cut cell of interest i, j. The circle dots denote the Eulerian cell centers while the
square dots show the locations of the data points Φ from which the boundary flux F f

i,j

is interpolated. The interpolation line normal to the solid boundary is represented by a
dashed line. In case of Dirichlet boundary conditions, Φb is known but the data points
ΦI

i+1 and ΦI
i+2 are themselves interpolated with second-order accuracy along the dotted

lines using the centers of the Eulerian grid cells.

[100]. In this method, the solid boundaries are assumed to cut the Eulerian
cells in a piecewise linear fashion. Boundary conditions are enforced by es-
timating the flux on the solid boudary using second-order interpolations on
a stencil involving the surrounding fluid cells. An example of such interpo-
lation stencil in two dimensions is shown in figure 4.1. This method can be
implemented so that only the volume and face fluid fractions are necessary
to describe the boundary and recover the boundary flux [152]. As such, at
the beginning of the simulation these two fluid fraction fields are generated
from either a user-defined level-set function describing the geometry or an
STL file.

If no additional treatment is done, it is well known that this class of
cut-cell methods suffers from unreasonably strict CFL restrictions due to
cells with small fluid volume fractions. Indeed, when a cell is cut by a solid
boundary the effective CFL condition becomes ∆t < c∆x/(f |u|), where c
and f are the volume and face fractions, and |u| is the velocity norm in
the considered cell. If c/f is close to zero, the time step ∆t may become
arbitrarily small. To alleviate this issue, a “flux redistribution” technique is
carried out, where the fluxes of problematic small cells are redistributed to
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their neighbors, thus preventing ∆t from becoming arbitrarily small [35, 58,
154].

4.3.3 Front-Tracking Method (FTM)

Standard FTM formulation

The capsule configuration is described using the Front Tracking Method:
we adopt a Lagrangian representation of the capsule, which we cover by a
triangulated, unstructured mesh [193, 195]. This Langrangian mesh commu-
nicates with the Eulerian octree grid used to decribe the background fluid by
means of regularized Dirac-delta functions introduced by Peskin [147], which
role is to interpolate velocities from the Eulerian grid to a Lagrangian node;
and to spread membrane forces from a Lagrangian node to the Eulerian grid.
In this paper we use a cosine-shaped regularized delta function:

δ(x0 − x) =



1

64∆3

3∏
i=1

(
1 + cos

( π

2∆
(x0,i − xi)

))
if |x0,i − xi| < 2∆,

0 otherwise,

(4.12)

where ∆ is the length of an Eulerian cell and x0 = [x0, y0, z0] corresponds in
practice to the coordinates of a Lagrangian node. The prefactor 1/(64∆3)
ensures that the discrete integral over the whole space

∫
Ω δ(x0 − x)dx is

equal to 1. Then, the velocity u0 of a given Lagrangian node located at x0

is interpolated from the Eulerian velocity field u using:

u0 =

∫
Ω
u(x)δ(x0 − x)dx ⇐⇒ u0 =

∑
i∈stencil

uiδ(x0 − xi)∆
3, (4.13)

where “stencil” denotes the Eulerian cells which center xi is such that δ(x0−
xi) ̸= 0, and ui is the velocity of a given fluid cell. Similarly, the membrane
force F0 at a Lagrangian node is spread to a force density field f using:

M(supp(δ))f =

∫
Ω
F0δ(x0 − x)dx⇐⇒ fi = F0δ(x0 − xi), (4.14)

where M(supp(δ)) is the measure of the support of the regularized Dirac-
delta function, and is in practice equal to 64∆3 in three dimensions for the
regularized Dirac-delta function we choose in Eq. (4.12).
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Once the Lagrangian velocities of all the capsule nodes have been inter-
polated from the Eulerian velocity field using Eq. (4.13), the position of
each node is updated using a second-order Runge-Kutta time integration
scheme. The membrane stresses are then computed from the new config-
uration of the capsule using the methods described later in Section 4.3.4,
and transferred to the background fluid using Eq. (4.14). In the context of
particle-laden flows, the use of the IBM requires sub-time stepping for the
particle advection due to the orders of magnitude difference in the fluid time
scale and the solid-solid interactions time scale [194]. This is not necessary
for capsule-laden flows described by the FTM, i.e. the time step for the
advection of Lagrangian nodes is equal to that of the fluid solver. It follows
that the trajectories of each Lagrangian node coincide with the streamlines
of the flow and that the triangulations of two interacting capsules can never
overlap − provided that the time step is sufficiently small. As such, there
is no need for any ad-hoc repulsive force between two approaching capsules
or between a capsule approaching a wall, as was the case in e.g. [128]: the
non-penetration condition is seamlessly handled by the local flow field. In
the latter case of close interaction between a capsule and a wall, however,
the definition of the IBM stencil must be altered, as described in the next
subsection.

Additionally, the case of capsules of inner viscosity µi different from the
viscosity of the surrounding fluid µe needs special treatment. We adopt the
approach developped in the original FTM by Unverdi & Tryggvason [195]:
a discrete indicator function I is computed from a discrete “grid-gradient”
field G(x):

G(x) =
∑
i∈T

Siδ(x− xi)ni, (4.15)

where T denotes the set of all triangles of the discretization of the surface of
all the capsules, Si is the surface area of triangle i, xi is the position vector
of its centroid and ni is its unit inward normal vector. In practice, G(x) is
computed by looping over all triangles of the discretizations of all capsules
and spreading the quantity Sini using the regularized Dirac-delta functions
introduced previously. As such, G(x) is non-zero in the union of all the
IBM stencils. The discrete indicator function I(x) is computed by solving
the following Poisson problem:

∆I = ∇ ·G. (4.16)

Since I is a regularized step function, it should have constant values away
from the capsule membranes. To guarantee this property, we only update I
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in the cells where G is non-zero and we re-initialize I to 0 or 1 elsewhere,
as suggested in [193].

Adaptive FTM strategy

Our current implementation of the FTM requires all cells in an IBM stencil
to be the same size ∆. As a results, all the Eulerian cells around the mem-
brane must be the same size as well, although future studies may lift this
restriction. In practice, since the flow physics is happening in the vicinity of
the capsule, we need the cell sizes around the membrane to be the smallest
grid size of the fluid domain. To enforce this condition, we create a scalar
field ξ initialized at each time step to be: (i) 0 if the Eulerian cell does not
belong to any IBM stencil; or (ii) a randomly generated value between 0 and
1 otherwise. In other words, the scalar field ξ tags the IBM stencils with
noise while the rest of the domain is set to a constant value. Feeding this
scalar field to Basilisk’s wavelet adaptation algorithm ensures that all the
stencil cells are defined at the finest level, and that no IBM stencil contains
Eulerian cells of different cell levels.

4.3.4 Computation of the membrane forces

Computation of the elastic force with the Finite Element Method

In order to compute the nodal elastic forces given by Eq. (4.8), we employ
a Finite Element Method (FEM). In most FEM solvers from Engineering
applications, the sought quantity is the displacement of a structure under a
known applied stress. In the case of biological membranes, we rather seek the
internal stress of the membrane under a known displacement [19]. Charrier
et al. [29] have been the first to design this specific FEM framework: we
base our implementation on their work as well as that of Doddi & Bagchi
[45].

Consider an arbitrary triangle Ti on the discretized membrane: in or-
der to compute the elastic force of its three vertices, we first rotate it to a
common plane − e.g. the x, y-plane − using a rotation matrix Ri from the
current orientation of the triangle to its orientation in the common plane.
Then, we assume the position of the triangle vertices in a stress-free configu-
ration is known in the common plane, and we compute the displacements vk
of each of the three vertices of Ti. Using linear shape functions, the defor-
mation gradient tensor and the Cauchy-Green deformation gradient tensor
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attached to Ti can be computed:

F =
∂vk
∂xp

, C = F TF , (4.17)

where (xp,yp) is the basis of the common plane. Note that F and C are
two-dimensional tensors and correspond to the tangential components of Fs

and Cs in Eq. (4.3−4.4). By diagonalizing C and taking the square root
of its eigenvalues (C is symmetric positive definite), we can access the two
principal stretch ratios λ1, λ2 attached to Ti. Following Charrier et al. [29],
the principle of virtual work yields the expression linking the nodal force
and nodal displacement at node j:

FP
elastic,j = Ai

∂W

∂λ1

∂λ1
∂vj

+Ai
∂W

∂λ2

∂λ2
∂vj

, (4.18)

where Ai is the area of Ti. Rotating Eq. (4.18) back to the current reference
frame of Ti, we get the final expression of the contribution of triangle Ti to
the elastic force of node j:

Felastic,j = RTFP
elastic,j

= AiR
T

(
∂W

∂λ1

∂λ1
∂vj

+
∂W

∂λ2

∂λ2
∂vj

)
.

(4.19)

This FEM implementation is summarized in algorithm 4.1.

Computation of the bending force using paraboloid fits

The computation of Fbending relies on the local evaluation of: (i) the mean
and Gaussian curvatures κ and κg, (ii) the Laplace-Beltrami operator of the
mean curvature ∆sκ, and (iii) a relevant control area A.

To evaluate κ and κg at node i, we blend the approaches of Farutin et
al. [53] and Yazdani & Bagchi [212]. A local reference frame is attached to
node i, with the z-direction coinciding with the approximate normal vector
ni. Then, a paraboloid is fitted to node i and its one-ring neighbors. In our
triangulated surface, most nodes have six neighbors3, making the system
overdetermined and a least-squares method is used. From this paraboloid
fitting, we can derive the local mean and Gaussian curvatures − see equa-
tions (12) and (13) in [212] −, as well as a refined approximation of ni.

3Exactly twelve nodes have five neighbors, since we discretize a spherical membrane
by subdividing each triangle of an icosahedron. Each newly created node is projected
back to a sphere, and if necessary projected onto a more complex shape, e.g. a biconcave
membrane.
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Algorithm 4.1 Pseudocode for the Finite Element Method

loop over all triangles i
loop over the three nodes j of Ti
Compute xP

j = Rxj

Compute the nodal displacement vj = xP
j − xP

j, t=0

end loop
Compute F , C from Eq. (4.17)
Compute the eigenvalues of C and F , i.e. λ21, λ

2
2, λ1, λ2

loop over the three nodes j of Ti
Compute ∂λ1/∂vj , ∂λ2/∂vj
Compute FP

elastic,j from Eq. (4.18)

Rotate FP
elastic,j to the current orientation of Ti

Add Felastic,j to the total elastic force of node j
end loop

end loop

This procedure is iterated using the newest normal vector approximation to
define the local frame of reference, until satisfactory convergence of ni is
reached. Our numerical experimentations show that between three to five
iterations usually suffice to obtain a converged normal vector.

The same paraboloid fitting method is used to compute ∆sκ, or ∆s(κ−
κ0) in the case of non-zero reference curvature. This time, a paraboloid is
fitted to the curvatures of node i and its neighbors, and then differentiated
to obtain the desired surface Laplacian.

The last term A is necessary to obtain a bending force as opposed to
a bending force per surface area. Let Ai denote the nodal area attached
to node i: at any time the sum of all nodal areas need to equal the total
area of the capsule, i.e.

∑N
i=0Ai = Atot with N the number of Lagrangian

nodes and Atot the total area of the discretized surface of the capsule. The
Voronoi area of node i enforces this property only for non-obtuse triangles.
As such, we adopt the “mixed-area” of Meyer et al. [72, 137] which treats
the special case of obtuse triangles separately: if a triangle j is not obtuse,
its contribution to the nodal area of its vertices is the standard Voronoi area;
while if j is an obtuse triangle, the nodal area of its obtuse vertex is Aj/2
while the nodal area of the remaining two vertices is Aj/4, where Aj is the
area of triangle j.
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4.4 Validation Cases

4.4.1 Elastic and bending forces of an isolated membrane

Elongation of a flat elastic membrane

Our first validation case focuses on the computation of the elastic stress in
the membrane. To this end, we stretch an isolated flat membrane devoid
of bending resistence in one of its principal direction e1 while ensuring the
principal stress T2 in the second principal direction e2 remains zero. We then
analyze the non-zero principal stress T1 = (∂W/∂λ1)/λ2 as a function of the
principal stretch e1 = (λ21 − 1)/2. This test is repeated for two membranes:
the former obeying the neo-Hookean law and the latter obeying the Skalak
law. Note that in order to set the principal stress T2 equal to zero, we
impose λ2 to a value strictly lower than 1, i.e. the membrane is shrinked in
the second principal direction:

λ2 =

{
1/
√
λ1 for the neo-Hookean law√

(1 + Cλ21)/(1 + Cλ41) for the Skalak law
(4.20)

We compare our results to the exact stress derived by Barthès-Biesel et
al. [20] in figure 4.2, with Es = C = 1. The data we generate overlaps
perfectly with the analytical stress-strain relations, thus validating the im-
plementation of our Finite-Element solver for the elastic membrane stresses.
The source code to reproduce this validation case is available online [81].

Bending force of a curved membrane

In order to validate our bending force, we follow the procedure of Guck-
enberger et al. [72]: considering a biconcave membrane with zero reference
curvature, we compare the mean and Gaussian curvatures, Laplace-Beltrami
operator of the mean curvature, and total nodal bending force density to
analytical expressions derived using a symbolic calculus software. Since the
biconcave capsule has a rotational symmetry around the z-axis and a sym-
metry with respect to the (x, y)-plane, we plot our results according to the
angle θ defined in figure 4.3, with θ varying from 0 to π/2. This biconcave
shape is a good candidate to test the bending force since its two princi-
pal curvatures are in general not equal to each other and are varying along
the surface of the biconcave shape − even changing sign. The following re-
sults are obtained with a biconcave membrane discretized by a triangulation
containing 5120 triangular elements.
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Figure 4.2: Stress-strain response of an isolated flat membrane for the neo-Hookean and
Skalak elastic laws. The results from this study are compared to exact expressions derived
in [20].

Figure 4.3: Schematic of a biconcave capsule centered at the origin, and definition of
the polar angle θ.
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We compare our computed mean and Gaussian curvatures to their re-
spective analytical expressions in figure 4.4a: the agreement is very satisfac-
tory for both curvatures. Figure 4.4b shows the Laplace-Beltrami operator
of the curvature against its analytical expression: the general trend still
matches that of the analytical expression very well, but a few outliers devi-
ate from it by a few percents. The same behavior is observed in figure 4.4c
which shows the nodal bending force density. The fact that the behavior of
figure 4.4b and figure 4.4c is similar is note surprising, as the nodal bending
force density plotted in figure 4.4c directly involves the Laplace-Beltrami
operator of the mean curvature shown in figure 4.4b. It is expected to see
some small deviations to the theory when taking the Laplace-Beltrami op-
erator of the mean curvature, as we are essentially taking a fourth-order
derivative of the geometry of the membrane, and Guckenberger et al. [72]
observe a similar noise when performing the same tests (see figures 6c and 8e
in [72]). In fact, they show that most other methods perform much worse at
computing the Laplace-Beltrami operator of the mean curvature, and hence
at computing the total bending force. As such, our implementation of the
bending force shows the expected performance. The code to reproduce this
test case is available at [82].

4.4.2 Initially spherical capsule in an unbounded shear flow

Neo-Hookean elasticity without bending resistance

We now seek validation of the coupling between the membrane solver and the
fluid solver. To this end, we consider an initially spherical capsule of radius a
in an unbounded shear flow. The elasticity is governed by the neo-Hookean
law, and the flow field is initialized to be that of an undisturbed shear
flow. As the capsule deforms, we plot the Taylor deformation parameter
D = (amax−amin)/(amax+amin) as a function of the non-dimensional time
γ̇t, with amax and amin the maximum and minimum radii of the capsule at
a given time, and γ̇ the shear rate. We perform this simulation for various
Capillary numbers Ca = µa2γ̇/Es, with Es the elastic modulus. In this
test case, Stokes conditions are intended so we set the Reynolds number
to 0.01. At time t = 0, the flow field is set to that of a fully developped
shear flow: ux = γ̇y. The computational box is bi-periodic in the x and z
directions, while Dirichlet boundary conditions for the velocity are imposed
in the y direction. The length of the computational box is equal to 8 initial
radii, the size of the most refined Eulerian cells is set to 1/128 that of the
domain length, and the membrane is discretize by 1280 triangles. The non-
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Figure 4.4: Comparison of the computed mean and Gaussian curvatures (top left),
Laplace-Beltrami operator of the mean curvature (top right) and nodal bending force
density (bottom) to their analytical expressions. All quantities are plotted against the
polar angle θ defined in figure 4.3.
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Figure 4.5: Taylor deformation parameter as a function of the non-dimensional time of
an initially spherical Neo-Hookean capsule in an unbounded shear flow. The solid line
corresponds to 32 Eulerian cells per initial diameter and a Lagrangian discretization using
1280 triangles, while the dashed line corresponds to 64 Eulerian cells per initial diameter
and a Lagrangian discretization using 5120 triangles.
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Figure 4.6: A zoomed in snapshot of a buckling membrane at Ca = 0.0125 with a
Lagrangian discretization comprising 5120 triangles. This behavior is arising due to the
absence of bending stresses, and the buckling wavelength is dependant on the Lagrangian
discretization. The color field represents the x-component of the velocity.

dimensional time step γ̇∆t is set to 10−3, except for the Capillary numbers
Ca = 0.025 and Ca = 0.0125 where the time step is decreased to γ̇∆t = 10−4

to stabilize the elastic force computation.
This case has been widely studied in the literature: in figure 4.5 we com-

pare our results to those of [156, 170] who used the BIM, as well as [45]
who used the FTM. The agreement is very satisfactory: the steady-state
value we obtain for D is well within the range of the reported data, both
in the transient regime and once a steady-state is reached. We also show
in figure 4.5 the results for a finer triangulation of the membrane with 5120
triangles, and a refined Eulerian mesh with the finest Eulerian cell size cor-
responding to 1/256 that of the domain length. The only difference is that
the steady state is longer to reach for Ca = 0.025 and Ca = 0.0125, due
to the apparition of buckling instabilities on the membrane as a result of
the absence of bending stresses. This buckling instability has been observed
both experimentally [109] and numerically [204, 213], although in numeri-
cal simulations the wavelength is unphysical and determined by the size of
the mesh discretizing the capsule [19]. In our simulations, we do observe
the same dependance of the wavelength of the membrane buckles on the
Lagrangian mesh element size. An example of this buckling instability is
shown in figure 4.6. The code to reproduce this test case is available at [83].
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Including bending resistance

We further validate our solver by considering the similar case of a capsule
deforming in a shear flow, this time with the addition of a bending force.
As in the previous case, an initially spherical, unstressed capsule is placed
in a shear flow where the initial velocity field is fully developped. The
Capillary number is Ca = 0.05, and the non-dimensional bending coefficient
Ẽb = Es/(a

2Eb) is chosen equal to 0.0375. The membrane is discretized
with 5120 triangles and the same Eulerian resolution as in the previous case
is chosen. Due to the stiffness of the bending force, we set the time step
to ∆t = 10−4. The Taylor deformation parameter is compared to that of
various studies in the literature in figure 4.7. The capsule deforms under
the action of the flow field and the Taylor deformation parameter quickly
attains a steady state of about D = 0.15. We remark that the data reported
in the literature is scattered by about 20% which underlines the challenges to
simulate Helfrich’s bending force, as was previously noted by [72]. We also
note that our results are situated well within the range of the reported data:
we are close to the results of Zhu & Brandt [221] and Le et al. [120], and our
curve is located in the middle of the reported range that we borrowed from
[71, 72]. Given such a wide range of reported literature data, it is difficult
to conduct a rigorous quantitative analysis. Nevertheless, we conclude from
figure 4.7 that our bending force shows a similar behavior as that of other
studies, a claim also supported by the validation case in Section 4.4.4. The
code to reproduce this test case is available at [84]

4.4.3 Initially spherical capsule flowing through a
constricted channel

To validate our implementation for an elastic capsule in the presence of
complex boundaries, we consider the case of a capsule flowing through a
constricted square channel proposed by Park & Dimitrakopoulos [145]. The
elasticity of the membrane is governed by the Skalak law with the area
dilatation modulus C set to 1, the capsule is initially pre-inflated such that
its circumference is increased by 5%, and the flow is driven by an imposed
uniform velocity field at the inlet and outlet boundaries. We follow [145]
and choose the Capillary number to be 0.1, and since Stokes conditions are
intended we set Re = 0.01.

The results are presented in figure 4.8 and figure 4.9. The qualitative
agreement in figure 4.8 is very satisfactory as the capsule shape is visually
identical to that of [145]. We draw the reader’s attention to the adaptive
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Figure 4.7: Taylor deformation parameter of an isolated capsule undergoing elastic
and bending stresses in a shear flow. The capillary number is Ca = 0.05 and the non-
dimensional bending coefficient is Ẽb = 0.0375.
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Eulerian mesh on the right-hand side of figure 4.8: the cells size is imposed to
be minimal at the solid boundaries and around the capsule, while everywhere
else the adaptivity criterion is governed by the velocity gradients. As a
result, the grid cells away from the membrane and from the walls quickly
coarsen to up to three levels lower, except in the vicinity of the corners where
stronger velocity gradients occur. Figure 4.9 shows the non-dimensional
lengths of the capsule in the x-, y- and z-directions with respect to the non-
dimensional position of its center xc/Hc, with xc and Hc the x-position of
the center of the capsule and the half-height of the constriction, respectively.
As found by Park & Dimitrakopoulos, the final shape of the capsule is not
exactly spherical as it remains shrinked in the x-direction downstream of the
constriction. Despite some small deviations during the extreme deformation
of the capsule, around xc/Hc = −1, the overall quantitative agreement of
the transient shape of the capsule is also satisfactory, especially considering
that other authors have reproduced this case with similar or larger deviations
from the results reported by Park & Dimitrakopoulos [15, 93]. The code to
reproduce this test case is available at [85].

4.4.4 Red blood cell in an unbounded shear flow

The next test case aims at validating the membrane solver when a viscosity
ratio λµ = µi/µe is different than 1. To this end, we consider an RBC in
an unbounded shear flow, with λµ = 5. The membrane forces include the
Skalak elastic law and the Helfrich’s bending force. The Capillary number
is Ca = 0.1, the area dilatation modulus C is chosen equal to 50 and the
non-dimensional bending coefficient is Ẽb = 0.01. The reference curvature is
c0a = −2.09 [159, 214], where a = (3V/4π)1/3 is the radius of the sphere of
equal volume as that of the RBC. The initial shape of the RBC is biconcave
and is described by the following equations, for an RBC which largest radius
is orthogonal to the y direction [160]:

x = ac cosϕ cosψ

y = ac
2 sinϕ

(
α1 + α2 cos

2 ϕ+ α3 cos
4 ϕ
)

z = ac cosϕ sinψ,

(4.21)

with ϕ ∈ [0, 2π], ψ ∈ [−π
2 ,

π
2 ), α1 = 0.207, α2 = 2.003 and α3 = −1.123.

Since we consider a viscosity ratio, we also define the initial indicator func-
tion I as the volume fraction of inner fluid:
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Figure 4.8: Snapshots of the capsule as it flows through the constriction. Left: Park &
Dimitrakopoulos [145]; Right: this study.
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I(x) =


1 if Φ(x) < 0

0 if Φ(x) > 0

between 0 and 1 otherwise,

(4.22)

where Φ is the level-set alternative formulation of Eq. (4.21):

Φ(x, y, z) =
x2 + z2

(ac)2
+

4y2

(ac)2

(
α1 + α2

x2 + z2

(ac)2
+ α3

(
x2 + z2

(ac)2

)2
)
. (4.23)

The initial fluid velocity is set to that of an unbounded shear flow of shear
rate γ̇ with the velocity gradient in the direction of the greater axis of the
RBC. The dimensionless time step we use is γ̇∆t = 10−4 and is determined
from trial and error.

The qualitative results are presented in figure 4.10, where we include
snapshots of the same case from Yazdani & Bagchi [214]. We observe that
the RBC is undergoing a tumbling motion, a behavior of RBCs that is not
seen without viscosity ratio in this range of Capillary numbers [160, 214].
Moreover, the deformation of the RBC matches qualitatively well that of
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Figure 4.10: Tumbling motion of an isolated RBC in a shear flow. Top: this study;
bottom: Yazdani & Bagchi [214].

[214]. However our tumbling period seems slightly shorter than that of [214]:
we attribute this small discrepancy to the fact that we may have set different
values for the area dilatation modulus C, as [214] only provides a range of
values: C ∈ [50, 400]. Nevertheless, the results in figure 4.10 show that in
our implementation, the combination of elastic forces, bending forces and
visocity ratio matches well the qualitative results observed in the literature,
and that the overall agreement is satisfactory. The code to reproduce this
case is available at [86].

4.4.5 Capsules interception in a shear flow

Our last validation case focuses on the interactions of two capsules. Two
initially spherical, pre-inflated neo-Hookean capsules are placed in an un-
bounded shear flow with their initial positions offset in the horizontal and
vertical directions as shown in figure 4.11. Since the capsules are offset in
the vertical direction, they gain horizontal velocities of opposite signs and
their trajectories eventually intercept. This configuration is a good valida-
tion candidate since we can compare our results to those obtained by Lac et
al. using the boundary integral method [115]. We consider a computational
box of size 16a where a is the initial radius of the capsules. The finest Eu-
lerian resolution corresponds to the domain being discretized by 512 cells in
each direction, and the two membranes are discretized with 5120 triangles.
A non-dimensional time step of γ̇∆t = 2.5 · 10−4 is chosen. The Reynolds
number is set to 0.01.

Figure 4.12 shows the qualitative comparison of the shape of the two
capsules at several stages of the interception. In our simulations, the color
field corresponds to the vertical component of the velocity. At each stage,
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Figure 4.11: Schematic of the two capsules in in the shear flow, prior to the interception.
The horizontal and vertical gaps ∆x1 and ∆x2 are defined, and the red arrows represent
the velocities of the centers of the capsules.

13

Figure 4.12: Snapshots of the interception of two neo-Hookean capsules in a shear flow.
Left: Boundary Integral results of Lac et al. [115]. Right: This study. The color field
corresponds to the vertical component of the velocity (rescaled for each snapshot).
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gap ∆x1/2a between the centers of the two capsules. The results from this study are
compared to Lac et al. [115].

there is visually no difference in the shape of the capsules. If we track the
center of each capsule throughout the simulation, we can compute their dif-
ference ∆x2 in the vertical direction and their difference in the horizontal
direction ∆x1. Normalizing by the initial diameter 2a of the capsules, we
plot in figure 4.13 the vertical gap between the two capsules as their inter-
cept, and we compare our results to those of Lac et al. [115]. The agreement
is very satisfactory: the transient regime is very well captured, both meth-
ods showing a maximum non-dimensional vertical gap of about 0.72; and
the steady-state reached is about 0.54. Small discrepancies can be observed
around ∆x1/2a = −2 where our vertical gap is slightly lower than that of
Lac et al.; and for ∆x1/2a between 4 and 6 where our slope is still slightly
negative while that of Lac et al. is essentially zero. Those discrepancies are
minor and could be explained by our choice of Reynolds number Re = 10−2

while the boundary integral method operates in true Stokes conditions. Re-
garding the adaptive mesh, as stated above we perform this simulation using
an equivalent fluid resolution of 64 cells per initial diameter, in a cubic box
8 diameters in length. Our simulation requires about 4.5 · 105 fluid cells,
while using a constant mesh size would require about 1.3 ·108 cells. For this
specific case, using an adaptive grid therefore reduces the number of fluid
cells by a factor of about 300.

A similar configuration was later examined by Doddi & Bagchi [44] in
the presence of inertia. In a cubic box of size H = 4aπ, periodic in the
x and z directions, for a Capillary number of 0.05 and an initial vertical
distance ∆x2/2a = 0.2, they observed that the capsules don’t intercept
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Bagchi [44].

when the Reynolds number Re = ργ̇a2/µ is greater or equal to 3. Instead,
the vertical component of the center of the capsules changes sign and the
direction of movement is reversed. We reproduce these results from Doddi &
Bagchi (figure 8c in [44]): each capsule is discretized with 5120 triangles, the
Eulerian equivalent resolution is 40 points per initial diameter, and the non-
dimensional time step is ∆t = 10−3. Figure 4.14 shows the vertical position
of the centers of the two capsules with respect to time, for Reynolds numbers
of 3, 10 and 50, and the generated data is compared to [44]. Our results
superimpose very well with [44], in particular for Re = 3 and Re = 10. For
Re = 50, the agreement is still very satisfactory although we notice that we
predict a slightly larger overshoot around t = 18 compared to the results of
[44].

Overall, the quantitative agreement in figure 4.13 and figure 4.14 is very
satisfactory and it validates our adaptive front-tracking solver for several
capsules, both in Stokes conditions and in the presence of inertia. The code
for these two cases is available at [87, 88].
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4.5 Results

4.5.1 Capsule flowing through a narrow constriction

In their original study, Park & Dimitrakopoulos [145] investigated the case
presented in Section 4.4.3 for relatively wide constriction sizes − the half
size of the constriction Hc was greater than or equal to the capsule radius
a. In this subsection we instead decrease the constriction size to Hc = a/2
in order to demonstrate the robustness of our solver in cases of extreme
deformations, including close to domain boundaries. As in Section 4.4.3,
the capsule is initially circular and pre-inflated such that each distance on
the capsule surface is increased by 5%. It obeys the Skalak elastic law with
C = 1 and Ca = 0.1. Since the capsule undergoes extreme deformations,
we also consider a bending force in order to supress unphysically sharp
corners: the non-dimensional bending coefficient is set to Ẽb = 10−3. In
order to resolve well the capsule deformation, we increase the resolution of
the triangulation, which now comprises 20480 triangles. We also perform
this simulation for two finest Eulerian grid resolutions of 50 and 100 grid
cells per initial diameter respectively. The flow is driven by an imposed
uniform velocity field at the inlet and outlet boundaries, and the Reynolds
number is set to 0.01 to model Stokes flow conditions. For this case the
non-dimensional time step is set to a∆t/U = 2.5 · 10−5, with a the initial
radius of the capsule and U the characteristic velocity of the fluid. It appears
that this strict restriction on the time step is due to the stiff bending force
combined to the very fine discretization we choose.

Qualitative results are shown in figure 4.15. As expected, the defor-
mation of the capsule is considerably greater when the constriction size is
halved: the capsule becomes almost flat as it reaches the center of the con-
striction. Figure 4.15 also confirms that the Eulerian mesh is refined only
in the region of interest, as the grid size quickly increases with the distance
from the constriction and from the capsule. We show quantitative results in
figure 4.16, where the non-dimensional x-, y- and z-lengths of the capsule are
plotted against the non-dimensional x-position of the center of the capsule.
Unsurpisingly, the capsule vertical length ly decreases by over a factor of
two when the capsule reaches the center of the constriction, before sharply
increasing again as the front of the capsule expands while leaving the con-
striction. The sharp point observed for ly at xc/Hc = 0 is simply due to the
non-locality of the variable ly: for xc/Hc ≤ 0 the maximum height of the
capsule is located at its rear, while for xc/Hc ≥ 0 it is located at its front.
We also note that the maximum decrease of the capsule height lNy,min in the
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19

Figure 4.15: Qualitative comparison of a capsule flowing through a constricted channel:
when the constriction size is equal to the initial diameter of the capsule (left); and when
the constriction size is equal to half of the initial diameter of the capsule, with a finest
Eulerian grid resolution of 100 cells per initial diameter (right). Color field: x-component
of the velocity field.
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case of a narrow constriction is much more pronounced than its counterpart
lWy,min in the wider constriction. However, the minimum capsule height is

not halved when the constriction size is halved, i.e. lNy,min > lWy,min/2 . On
the other hand, the maximum x-length of the capsule more than doubles in
the case of a narrow constriction when compared to the wider constriction
size, and the maximum z-length more than triples. Therefore, the capsule
preference to elongate in the streamwise direction rather than the spanwise
direction is reduced when the constriction is narrower. Finally, the capsule
reaches a steady shape after the constriction for xc > 6Hc: the constriction
size does not appear to affect this steady shape, which is a slightly deformed
sphere compressed in the streamwise direction.

In figure 4.16 the x-, y- and z-lengths of the capsule are shown for two
maximum Eulerian resolutions: D/∆x = 50 and D/∆x = 100, with D the
initial diameter of the capsule and ∆x the smallest Eulerian cell size. Rel-
atively minor differences are observed between the two mesh resolutions,
indicating that a maximum Eulerian resolution of D/∆x = 50 is sufficient
to capture the underlying physics of this configuration. In terms of perfor-
mance, conducting the previous convergence study up to D/∆x = 100 with
a constant grid size would have required about 4.2 · 107 fluid cells, while
our simulation used less than 4.6 · 106 fluid cells, thus allowing a tenfold
reduction in the number of fluid grid cells, and likely reducing the computa-
tional resources by a factor of 7 to 10 when accounting for the computational
overload due to the complex tree structure of the grid and the adaptivity
algorithm.

4.5.2 Capsule-laden flows in large complex channel
geometries

It is clear from the previous simulation results presented in this paper that
the adaptive mesh refinement is useful to lower the number of cells inside the
fluid domain, and thus the amount of computations per time step. However,
it can also be desirable to reduce the number of cells outside the fluid domain,
as they can also be associated with a large computational and memory cost.
This is because in cases of complex geometries the computational domain of
Cartesian grid methods is by design a bounding box that surrounds the fluid
domain. As such, if the volume fraction of the fluid domain in this bounding
box is low and if a constant grid size is used, most of the computational
cells are located inside the solid walls and a significant amount of memory
and computational resources are allocated for these “solid” cells where no
physics happens. This is especially true in cases of large, three-dimensional
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channel geometries. For instance, let us consider a helical pipe of radius
Rpipe connecting an upper and a lower arm of length Larm, where a capsule
of radius Rc = Rpipe/4 is placed at the top of the geometry. If we assume
this geometry is embedded in a bounding box of depth 2Rhelix = 10Rpipe,
height Hhelix = 12Rhelix and length 2Larm = Hhelix, as shown in figure 4.17a,
ensuring 16 grid cells per initial capsule diameter using a uniform Eulerian
grid would require over 1.2 billion grid cells, rendering the computation
extremely expensive. In contrast, using Basilisk’s adaptive mesh as shown
in figure 4.17a allows to reduce the number of computational cells by a factor
of about 200, down to less than 6 million grid cells. If only the helix itself
is of interest and not the connecting arms, using a uniform Eulerian grid
would require about 200 million grid cells, and using our adaptive solver
would still reduce the number of grid cells by over a factor of 30.

As a demonstration of the capability of the present solver to handle such
large and complex geometries, simulations are carried out in the helical
geometry described above and shown in figure 4.17. A neo-Hookean capsule
of radius Rc with Ca = 0.1 is placed on the upper straight pipe centerline at
a distance of 1.5Rhelix prior to entering the helix. We propose to study the
inertial migration of this capsule for three Reynolds numbers: Re = 10, 50
and 100. We set the non-dimensional time step Rhelix∆t/U to 10−3, with
U the characteristic velocity of the fluid; and we choose a finest Eulerian
grid resolution corresponding to 16 grid cells per initial diameter. Each
case ran for about three days on 96 processors, with around 6 · 104 cells
per processor. To analyze the trajectories, we define the distance r⋆ of the
capsule centroid to the helix centerline normalized by the pipe radius Rpipe,
as well as the number of helical periods N⋆ = (Hhelix−z)/H1p, with H1p the
height of one vertical period of the helix, i.e. its pitch distance. A slice of
the flow field in the helix for Re = 100 is shown in figure 4.17c, and a movie
of this simulation as well as the code to reproduce it are available at [89].
The trajectories of the capsule are shown in the three-dimensional space in
figure 4.17b, in one dimension by showing r⋆ as a function of N⋆ in figure
4.18a, and in a cross-section of the pipe orthogonal to the helix centerline in
figure 4.18b. Only the path corresponding to the capsule located inside the
helix is shown in these figures. Immediately after release, the capsule moves
away from the centerline for all Reynolds numbers. The initial overshoot
of r⋆ increases with the Reynolds number, from r⋆max ≈ 0.3 at Re = 10 to
r⋆max ≈ 0.6 at Re = 100. After four helical revolutions, the capsule exits
the helix with a steady position of r⋆∞ ≈ 0.38 and r⋆∞ ≈ 0.45 for Re = 50
and Re = 100 respectively. In the case of Re = 10, however, a steady state
is not yet reached when the capsule exits the helix, but we can extrapolate
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Figure 4.17: Adaptive mesh around a helical geometry and its connecting pipes: (a)
full computational box around the whole geometry; (b) three-dimensional trajectory of a
capsule at Re = 10, 50, 100 (for visual clarity the helix is shrinked in the vertical direction);
(c) adaptive mesh and velocity field in the vertical plane. In (c), the color field corresponds
to the x component of the velocity, where blue is into the page and orange in out of the
page. The capsule is about to cross the vertical plane for the third time, hence the
additonal small cells inside the third circular cross-section from the top.
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the capsule trajectory to find that r⋆∞ ≈ 0.18 for this Reynolds number. For
all Reynolds numbers, the steady position is located in the lower half of the
cross-section, at an angle θ from the horizontal line of about −π/2, although
θ increases slightly with the Reynolds number. Interestingly, we note that
the capsule transient path is longer for Re = 100 than that for Re = 50:
as can be seen in figure 4.18, for Re = 100 the capsule seems to reach an
unstable equilibrium at r⋆ ≈ 0.58 and θ ≈ 0 for as long as 1.5 helical periods,
before continuing its spiralling motion towards a stable steady-state location.
Further investigation would be necessary to characterize this behavior and
determine if, for instance, this unstable equilibrium corresponds to the center
of a vortex, but this is not the focus of the present paper. The purpose of
this simulation is to show that the present solver is able to simulate large
three-dimensional channel geometries, and has the potential to simulate full
microfluidic devices.

4.6 Conclusion and perspectives

We have presented an adaptive front-tracking solver to simulate deformable
capsules in viscous flows at zero and finite inertia. The membrane mechanics
is governed by an elastic and a bending resistance, and a non-unity viscosity
ratio is allowed. Moreover, the present solver is compatible with complex
STL-defined geometries, thus providing all the ingredients needed to simu-
late realistic flow configurations of biological cells, including red blood cells,
both in-vivo and in-vitro. Numerous validation cases are presented against
data available in the literature: we compare our results mainly to the highly
accurate boundary integral method in Stokes conditions, and to other front-
tracking methods at non-zero Reynolds numbers. Very good qualitative and
quantitative agreement is shown in all cases. We then demonstrate the ro-
bustness of the present solver in more challenging configurations, as well
as its potential to tackle very large, three-dimensional channel geometries
relevant to inertial microfluidic applications. Moreover, the present imple-
mentation is open-source as part of the Basilisk platfrom: the documented
source code is freely available, as well as the source files to reproduce all the
simulations presented in this paper [80].

Although the present adaptive front-tracking solver can simulate all the
range of Reynolds numbers, the non-inertial limit is challenging because of
the computation of the viscous term. The simulations we show in this paper
at Re = 0.01 are several times slower to complete than their counterpart
at, e.g., Re = O(1) or Re = O(10). As a result, if only the non-inertial
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regime is sought, boundary integral solvers likely remain the most efficient
method by far. Another challenge is the stiffness of the bending stresses:
since the Helfrich’s bending formulation involves such high-order derivatives
of the membrane geometry, and since the time integration of the membrane
problem is explicit, the time step is controlled by the time scale associated
with the bending force whenever bending effects are included. This is a
known challenge of computing bending stresses on elastic membranes (see,
e.g., p. 40 of [19]). As a result, we have to decrease our time step by one
order of magnitude (sometimes even more) whenever the bending stresses are
included. Unfortunately, to our knowledge the stability condition associated
with the bending force is unknown and it is therefore not possible to stabilize
simulations by employing an adaptive time-step strategy, as is already the
case in Basilisk with the CFL condition and with the celerity of capillary
waves for surface tension stresses. One could investigate the implicit or
“approximately implicit” treatment of the immersed boundary method as
done by Roma, Peskin & Berger [174].

On the implementation side, the fluid solver from Basilisk is compatible
with shared and distributed memory systems − i.e. using OpenMP and MPI
libraries −, allowing to run simulations on large supercomputers. Naturally,
we have enabled our front-tracking solver to be compatible with MPI as well.
However, ensuring a good scaling with the number of capsules is not trivial
as the domain decomposition of the Eulerian adaptive mesh is governed by
a Z-ordering algorithm. As a result, when the Eulerian mesh is adaptive,
the stencils attached to the Lagrangian nodes of a given capsule are most
likely containing Eulerian cells handled by several distinct processors. In
other words, a single capsule has to exist on many different processors in
order to communicate with the background Eulerian mesh. Interpolating
velocities from the fluid cells to the Lagrangian nodes, and spreading the
Lagrangian forces to the fluid cells thus requires expensive inter-processor
communications. Investigating efficient strategies to simulate a large num-
ber of capsules with an adaptive mesh is left for future works. That being
said, in all the simulations shown in this study with one or two capsules con-
sidered, at most 5% of the total computing time is spent in the front-tracking
solver. Consequently, unless simulating a large number of capsules − e.g.,
O(100) −, the bottleneck is still the Navier-Stokes solver. Moreover when
a large number of capsules is considered, one could argue that a uniform
Eulerian mesh can be more efficient than its adaptive counterpart because
a large number of capsules would likely result in a high volume fraction of
capsules. An efficient parallel implementation of the present front-tracking
solver restricted to uniform Eulerian grids is straightforward and could be
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implemented in future studies if dense volume fractions are considered. An-
other extension to the present solver could be to allow the triangulation of
the membrane to be adaptive as well. Such adaptive triangulations have
been considered to simulate fluid-fluid interfaces [193], but in the case of
elastic membranes special care needs to be given to coarsen or refine the
shape functions of a triangle. However only simulations featuring extreme
membrane deformation would benefit from an adaptive membrane triangu-
lation, as the front-tracking solver is only taking a few percents of the total
computing time. For the applications we seek where reasonable membrane
deformations are expected, the gain of an adaptive membrane triangulation
is likely close to zero.

Another possible improvement to the present solver would be to allow
the support of the regularized Dirac-delta functions to include grid cells of
different sizes. Indeed, the current method imposes a constant grid size
in the vicinity of the membrane in order to apply the IBM in a straight-
forward manner, in a similar fashion to our Distributed Lagrange Mul-
triplier/Fictitious Domain method implemented in Basilisk to simulate flows
laden with rigid particles [182], but this can result in imposing a finer Eule-
rian grid resolution around the membrane than what is necessary to properly
resolve some parts of the membrane. This scenario typically happens when
the capsule is close or will come close to a sharp boundary, such as in the
case of the narrow constriction in Section 4.5.1. In figure 4.15, for instance,
as the capsule enters the narrow constriction, the Eulerian grid resolution
around its tail is much finer than necessary due to the very fine grid resolu-
tion needed at the front of the capsule, which is located in a flow with strong
gradients and close to sharp boundaries. A conceptually simple way to allow
the size of the Eulerian grid cells to change along the membrane would be:
(i) to propagate the forcing term or the averaging operator to smaller grid
cells located inside the stencil of interest; and (ii) to increase the stencil
size if a large grid cell is encountered, such that any stencil size is always
four times larger in each direction than its largest grid cell. This adaptive
extension of the immersed boundary method is presented in Appendix C
and shows promising results.

As demonstrated in Section 4.5.2, the current state of our adaptive solver
allows resolved inertial simulations of capsule-laden flows in large three-
dimensional geometries for a fraction of the computational cost of that of
front-tracking solvers implemented on uniform Cartesian grids. As such, our
solver has the potential to provide valuable insight to help develop inertial
migration microfluidic devices. The present solver may even allow the sim-
ulation of full microfluidic geometries consisting in several stacked layers of
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microfluidic channels, such as the spiralling geometries in the experimental
work of Fang et al. [52]. This has the potential to provide valuable quali-
tative and quantitative information about the flow field, capsule dynamics
and sorting efficiency of a given realistic microfluidic geometry, thus reduc-
ing the number of manufacturing iterations during the design process of such
devices. Our medium-term objective is to tackle this type of virtual design
problem, considering sub-domains of the full geometry as a first step, while
concomitently investigating the possible improvements stated above.
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Chapter 5

Motion and deformation of
capsules through a corner in
the inertial and non-inertial
regimes

5.1 Introduction

Membrane-enclosed fluid objects, or capsules, are everywhere in natural and
industrial processes, from red blood cells (RBCs), circulating tumor cells
(CTCs) or flowing eggs in biology to encapsulated substances in the phar-
maceutical, cosmetic and food industries [19]. The study of microcapsules
in particular is of primary importance in a variety of biological applications,
such as sorting and enriching solutions of biological microcapsules, e.g. to
segregate RBCs or CTCs, as well as efficiently manufacturing capsules en-
closing an active substance in the field of targeted drug delivery [11, 113].
In the past decade, microfluidic devices have been shown to accomplish a
variety of tasks including cell segregation based on size and deformability
[52, 75, 76, 222], concentration enrichment [129, 207, 208] and cell char-
acterization [70, 123, 206]. Moreover, the increase in computing power has
recently allowed numerical studies to contribute to the design of microfluidic
devices. For example, Zhu et al. [222] numerically investigated an original
microchannel geometry consisting of a semi-circular pillar located at the
center of a microchannel: their study showed that this design can efficiently
segregate cells based on membrane deformability. Recently, experiments
were conducted using their microfluidic design and concluded that it can
indeed sort cells based solely on membrane stiffness, with relatively high
efficacy [76]. With regards to cell characterization, Gubspun et al. [70] pro-
posed a method to determine capsule properties such as the membrane shear
modulus by comparing the experimental and numerical “parachute” shape
of capsules in a straight microchannel. While the majority of microfluidic
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investigations operate in Stokes conditions, in recent years the design and
study of inertial microfluidic devices has risen due to their ability to ac-
curately segregate capsules by size and to extract them from their solvant
[52, 223]. Inertial focusing in microfluidic devices typically relies on a spiral-
shaped channel concentrating heavier capsules to the outer, lower-curvature
edge of the channel, while lighter capsules concentrate closer to the inner,
higher-curvature edge. A smooth geometry such as a spiral-shaped channel
usually does not induce a high strain nor stress on a suspended capsule even
in inertial regimes, however little is known about the strains and stresses
induced by commonly encountered sharp geometries such as forks and cor-
ners on a capsule flowing in the presence of inertia. Moreover, the effect of
such sharp geometries on the hydrodynamic interactions of a train of sev-
eral capsules in inertial regimes is also an open question. More insight in
these directions is of practical interest in the design and operation of inertial
microfluidic devices because (i) the devices should not compromise the me-
chanical integrity of the capsules, i.e. it is critical to avoid capsule breakup,
and (ii) cell-sorting processes typically operate in very dilute regimes to
avoid capsule interactions, while a better understanding of such interactions
would allow to operate these devices at a moderate to high concentration
optimizing efficacy and throughput.

In the past four decades, a significant research effort has been invested
into the modeling and the study of capsule deformations in non-inertial
regimes, primarily because this regime is encountered in microcirculation
such as capillary vessels and in traditional microfluidic devices. Using for-
malism from the thin-shell theory [67], Barthès-Biesel & Rallison first pub-
lished an analytical solution for the time-dependant deformation of an elastic
capsule in an unbounded, creeping shear flow in the limit of small defor-
mations [21]. Over a decade later, Pozrikidis was able to go beyond the
assumption of small deformations using a Boundary Integral Method (BIM)
[156]. The same method was used to consider finite deformations of sheared
capsules which inner and outer fluid viscosities differ [170], as well as to
study the contribution of bending stresses [157], allowing to consider RBCs
suspended in an unbounded shear flow [158]. Besides unbounded geome-
tries, Zhao et al. [219] simulated RBCs in straight and constricted channels
using a spectral BIM. A similar method was later used by Hu et al. [79] to
consider an initially spherical capsule flowing through a square channel of
width similar to the capsule diameter: the originality of their work is that
they performed experiments and showed remarkable agreement between the
measured and the computed capsule shape. Concomitantly, Park and Dim-
itrakopoulos [145] studied the deformation of a capsule with non-unity vis-
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cosity ratio flowing through a sharp constriction. More recently, Balogh &
Bagchi [15–17] used a Front-Tracking Method (FTM) to analyze the motion
and deformation of RBCs through complex geometries resembling capillary
vessels found in human microcirculation: their simulations exhibited in par-
ticular the well-known cell-free layer observed experimentally between the
RBCs and the vessel walls [27, 140].

Regarding the study of flowing capsules in the presence of inertia, the
aforementioned analytical theory for small deformations as well as the pop-
ular BIM both fall short of accounting for the convective term in the fluid
momentum equation. Doddi & Bagchi [44] first studied inertial capsules in
the context of two interacting capsules in a shear flow using the FTM. They
showed in particular that the two capsules engage in spiralling motions at
sufficiently high inertia. The inertial motion of a deformable capsule was
then studied in straight microchannels [108, 166], where several equilibrium
positions are found away from the channel centerline, along the cross-section
diagonals. With regards to curved channels, Ebrahimi & Bagchi [48] recently
investigated the migration of a single capsule over an impressive amount of
varying parameters: the channel Reynolds number, the capsule deforma-
bility, as well as the aspect ratio and curvature of the channel were all
varied independently. Their study shows that for sufficiently high inertia,
exactly two focusing locations appear near the centers of the vortices of the
secondary flow, known as Dean’s vortices. However no mention of the mem-
brane internal strains and stresses is found in their work, as their goal was
not to investigate the capsule integrity in such flows.

While straight and curved microchannels are essential components of mi-
crofluidic devices, such simple geometries do not account for the numerous
junctions, corners and coils commonly found in these devices. To bridge
this gap, Zhu & Brandt [221] investigated the non-inertial motion and the
deformation of a single elastic capsule in a sharp corner. They showed that
the capsule follows the streamlines of the undisturbed flow regardless of
membrane deformability. Due to lubrication forces, the capsule velocity de-
creases when approaching the corner, reaches a minimum along the corner
diagonal, and rises back to its steady state with an overshoot increasing
with deformability. Similarly, the surface area of the capsule reaches a max-
imum inside the corner and reaches its steady value with an undershoot
more pronounced as deformability is increased. Also reported in their study
is the maximum stress in the capsule membrane, which can be used to as-
sess mechanical integrity and characterize the cell mechanical properties.
They find that the maximum stress deviation increases and shifts from the
front to the top of the capsule with increasing deformability. Wang et al.

105



5.1. Introduction

[207, 208] later considered the inertial and non-inertial path selection of a
single capsule through Y- and T-junctions, both typically encountered in
microfluidic geometries. They observe that at high inertia, the capsule does
not necessarily favor the daughter branch with the largest flow rate, and
that this effect is more pronounced for stiff membranes (corresponding to a
low capillary number). Recently, Lu et al. [129] investigated the interaction
and path selection of capsules in a T-junction at moderate inertia, with the
goal of enriching capsule solutions. When considering a pair of capsules,
they show that the leading capsule is weakly affected by the presence of a
trailing capsule, but that the reverse is not true. They find that the trailing
capsule enters a different branch depending on the initial interspacing dis-
tance and on the flow rate split ratio between the two daughter branches of
the T-junction. They then consider a train of capsules and find two distinct
regimes: (i) the interspacing distance is low and the capsule interaction is
high, resulting in an unsteady regime and affecting the trajectories of the
capsules, and (ii) the interspacing distance is large and the capsule inter-
action is low, leaving the capsule trajectories identical to that of a single
capsule. Interestingly, they report that the critical interspacing distance be-
tween two capsules plotted against the flow rate split ratio of the daughter
branches results in a master curve independent of membrane deformability,
capsule size, and Reynolds number.

In this chapter, we investigate the inertial and non-inertial motion and
the interaction of deformable capsules flowing through a sharp corner, which
is a very common geometry in microfluidic devices. As the efficiency of these
devices is defined in terms of the capsules throughput, which can be opti-
mized by increasing the flow rate as well as the concentration of capsules,
our objective is two-fold: first, we aim to quantify the effet of inertia on
the deformation of a single capsule in a microfluidic-relevant geometry, sec-
ond, we seek to describe the hydrodynamic interactions and deformation
differences between leading and trailing capsules when a pair and a train
of capsules are considered. The rest of this chapter is organized as follows.
In Section 5.2, we describe the governing equations as well as the flow con-
figuration and the considered parameter space. In Section 5.3, we give an
overview of our numerical method and we investigate the impact of the inlet
length. We analyze the motion of a single capsule in Section 5.4, both in
the non-inertial and in the inertial regimes. Section 5.5 is devoted to the
analysis of binary interactions of a pair of capsules, where the influence of
the initial interspacing distance is investigated. In Section 5.6, we consider
a train of ten capsules flowing through the corner and we discuss the veloc-
ity and deformation discrepancies between the leading and trailing capsules.
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Finally, we conclude in Section 5.7.
The documented source code allowing to reproduce all of the simulations

and figures presented in this chapter is freely available online [80].

5.2 Governing equations and problem statement

The capsule membrane Γ is assumed infinitely thin and is surrounded by
an incompressible, Newtonian fluid of constant viscosity and density. In all
of this study, the capsule inner and outer fluids are assumed identical: in
particular their viscosity ratio is unity. The fluid is described by the mass
and momentum conservation equations:

∇ · ũ = 0 (5.1)

∂ũ

∂t̃
+ ũ · ∇ũ =

1

ρ̃
∇p̃+ ν̃∆ũ+

1

ρ̃
f̃b (5.2)

where ũ is the velocity field, p̃ is the pressure field, ρ̃ is the density, ν̃ =
µ̃/ρ̃ is the kinematic viscosity, µ̃ is the dynamic viscosity and f̃b is a body
term accounting for the action of the membrane on its surrounding fluid.
The dimensional quantities are denoted by the ∼ symbol. The membrane
exhibits elasticity and bending resistance, and its action on the fluid is local,
resulting in the following expression for f̃b:

f̃b =
(
f̃elastic + f̃bending

)
δ̃(x̃− x̃Γ), (5.3)

where δ̃(x̃ − x̃Γ) is a Dirac distribution that is non-zero on the surface of
the membrane.

The shear and area-dilatation membrane stresses are described using the
thin-shell theory, and are briefly summarized here. The interested reader is
referred to Green & Adkins [67] as well as to the analytical study of Barthès-
Biesel & Rallison [21] for more details. We adopt a neo-Hookean law [67],
which surface strain-energy function is expressed as:

W̃s
NH

=
Ẽs

2

(
λ21λ

2
2 +

1

λ21λ
2
2

)
, (5.4)

where λ1,2 are the principal stretches in the two tangential directions, and Ẽs

is a shear modulus. Note the change in convention with respect to Eq. (4.6):
for ease of comparison with the existing literature [221], in this chapter Ẽs is
three times lower than in our previous definition of the neo-Hookean law in
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(a)

(b)

Figure 5.1: (a) Schematic of the geometry of the fluid domain. The channel has a square
cross-section of side length 3ã. (b) Visualization of the full channel and the computational
grid over the symmetry plane of the channel.

Chapter 4. As a result, the Capillary numbers in this chapter are scaled up
by a factor of three. From the previous strain-energy function, the principal
stresses σ̃1,2 are given by:

σ̃i =
1

λj

∂W̃s
NH

∂λi
, i, j ∈ {1, 2}, i ̸= j. (5.5)

The bending stresses for biological membrane are governed by the Hel-
frich’s bending energy Eb [77, 220]:

Ẽb =
Ẽb

2

∫
Γ
(2κ̃− κ̃0)2 dS, (5.6)

where Ẽb is the bending modulus, κ̃ is the mean curvature and κ̃0 is a
reference curvature. Taking the variational formulation of Eq. (5.6) leads
to the bending force per unit area Ã:

f̃bending/Ã = −2Ẽb(∆s(κ̃) + 2(κ̃− κ̃0)(κ̃2 − κ̃g + κ̃0κ̃))n, (5.7)

where κ̃g is the Gaussian curvature and n is the outer normal vector.
At t = 0, an initially spherical capsule of radius ã is placed in a square

channel of width W̃ = 3ã at a distance h̃0 = 30ã from a sharp corner, as
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represented in figure 5.1. An average cross-section velocity Ũ0 is imposed
at the inlet boundary, while the outflow boundary condition ∂ũn/∂n = 0
is imposed at the outlet boundary. When several capsules are considered,
we use the same initial conditions as Lu et al. [129]: a trailing capsule is
inserted in the simulation only after the centroid of its preceding capsule
has advanced by a distance d̃. Our problem is governed by the trailing
dimensionless numbers:

1. The channel Reynolds number Re = ρ̃Ũ0W̃/µ̃,

2. The Capillary number Ca = µ̃Ũ0ã/Ẽs, representing the ratio of viscous
stresses over elastic stresses,

3. The reduced bending stiffness coefficient Eb = Ẽb/(Ẽsa
2),

4. The confinement ratio β = 2ã/W̃ ,

5. The reduced initial gap between capsules d0 = d̃/2ã− 1.

In this chapter, the Reynolds number Re ranges from 0.01 to 50, the Cap-
illary number Ca varies from 0.075 to 0.35, and the reduced initial gap d0
is chosen from 0.125 to 1. The reduced bending stiffness Eb and the con-
finement ratio β are both kept constant, with β = 2/3 and Eb = 5 · 10−3

as proposed by Pozrikidis [160]. The reference curvature κ̃0 is equal to
−2.09/ã in this study, as is common for some biological membranes such as
RBC membranes [159, 214]. In the rest of this chapter, we use the capsule
radius ã as the characteristic length scale, and we define the characteristic
time scale as the radio of the capsule radius over the average cross-section
velocity, i.e. t = ã/Ũ0.

5.3 Numerical method and validations

We use our adaptive Front-Tracking Method (FTM) to solve the above equa-
tions: we provide below a brief overview of the numerical method, while
an in-depth description is available in [91]. Eq. (5.1) and Eq. (5.2) are
solved using the Finite Volume method on an adaptive octree grid using the
open-source software Basilisk [150]. The membrane is discretized using an
unstructured triangulation and Eq. (5.5) is solved using a linear Finite El-
ement Method, while Eq. (5.7) is solved using a paraboloid-fitting method.
The membrane triangulation and the octree grid communicate by means of
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the immersed boundary method [147, 148], where the Dirac distribution in
Eq. (5.3) is regularized using a cosine-based formulation:

δ̃(x0−x) =


1

64∆̃3

3∏
i=1

(
1 + cos

(
π

2∆̃
(x0,i − xi)

))
if |x0,i − xi| < 2∆̃

0 otherwise

,

(5.8)
where x0 = [x0,1 x0,2 x0,3] is the location of a Lagrangian node on the
surface discretization of the membrane, and ∆̃ is the local mesh size of the
Eulerian octree grid. Extensive validation of the present numerical method
was the focus of our previous study [91] and is therefore not presented here.
Nonetheless, the convergence with respect to the Eulerian grid as well as
the release distance of the capsule from the corner are investigated below.

In the immersed boundary method, it is well known that the support of
the regularized Dirac distribution may extend outside of the fluid domain
if the immersed object of interest becomes very close to the domain walls
[129, 194, 208]. In order to avoid unphysical loss of momentum for the spe-
cific membrane nodes close to the wall, it is important to ensure that none
of the supports of the regularized Dirac distribution extend outside of the
fluid domain, i.e. that there always exist more than two grid cells between
membrane nodes and the domain boundaries. As such, we simulate the dy-
namics of a capsule for two different grid resolutions in the configuration
where it is most deformed and is the closest to the channel wall, as shown
in figure 5.2b. Figure 5.2a shows the velocity of the capsule Ṽ inside and
downstream of the corner for Eulerian resolutions equivalent to 32 and 64
grid cells per initial capsule diameter, as well as the deviation of the ve-
locities in these two configurations. Excellent agreement is found between
the velocities computed using the two grid resolutions, with the maximum
discrepancy lower than 1% and the average discrepancy over the considered
time range of about 0.5%. Moreover, in both configurations it was found
that more than 3 grid cells are present in the lubrication layer between the
capsule tail and the upper corner wall. These results indicate that an equiv-
alent grid resolution of 32 grid cells per capsule initial diameter is sufficient
to obtain converged solutions, and that the present simulations do not suffer
from immersed boundary stencils extending outside of the fluid domain.

Next we investigate the influence of the normalized release distance Dc

between the initial position of the capsule centroid and the corner. Indeed,
after its release the capsule relaxes from a spherical to an equilibrium steady
shape and it is important that this steady state is reached before the capsule
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(a) (b)

Figure 5.2: (a) Centroid velocity of a capsule at Ca = 0.35 and Re = 50 for two grid
resolutions: 32 grid cells per initial diameter (red dotted line) and 64 grid cells per initial
diameter (red solid line). The blue curve denotes the deviation in the centroid velocities
for these two grid resolutions. (b) Corresponding shape and grid resolutions of the capsule
and the flow field: blue means zero velocity and red means large velocity.

enters the corner. As such, we consider three initial distances Dc = 15, 30
and 60 in the most challenging configuration at Re = 50 and Ca = 0.35,
i.e. the capsule is highly deformable and placed in a highly inertial flow.
The inlet boundary is located at a distance of 90a away from the corner and
is therefore sufficiently far away from the capsule to not alter its response.
The norm of the capsule centroid velocity Ṽ and the reduced capsule area
A = Ã/4πa2 are shown in figure 5.3, where the origin of the reduced time t
is chosen at the time the capsule reaches a minimum velocity Ṽmin. In figure
5.3a we remark that the capsule velocity Ṽ atDc = 15 decreases significantly
prior to entering the corner: this is because the initially spherical capsule
is located farther away from the channel walls and is therefore advected
faster than when it has reached a steady shape. We observe that neither
the capsule velocity shown in figure 5.3a nor the normalized area shown in
figure 5.3b present a steady state before the capsule enters the corner in the
case Dc = 15. Therefore a larger initial distance Dc should be used. When
considering Dc = 30, both the velocity and the normalized area present
steady values before the corner. Interestingly, inside and after the corner
the capsule velocity and area almost overlap when the capsule is released 15
and 30 initial radii away from the corner, suggesting that the corner resets
the dynamics of the capsule regardless of its previous state. The fact that
steady values for the velocity and the area of the capsule are reached before
the corner for Dc = 30 suggests that this initial release distance is suitable
for the rest of this study. Interestingly, releasing the capsule at Dc = 60
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(a) (b)

Figure 5.3: Centroid velocity (a) and normalized area (b) of a capsule flowing through
a corner from three distinct normalized release distances Dc = 15, 30 and 60, at Re = 50
and Ca = 0.35.

leads to an unexpected result: the capsule seems to no longer be in a steady
motion as its velocity (respectively its normalized area) is slightly decreasing
(respectively slightly increasing) prior to entering the corner. This suggests
that in this challenging configuration, the relaxation of the capsule from a
fixed spherical shape to a steady “parachute” shape occurs over very long
time scales. However, the magnitude of the deviations between the capsule
velocity and area in the cases Dc = 30 and 60 is at most 3%. As the capsule
has already reached a pseudo steady state by the time it reaches the corner
in the case of Dc = 30, and as the aforementioned discrepancies are small,
we choose Dc = 30 in the rest of this study. Again, this short study of the
impact of the initial release distance on the capsule dynamics was performed
in our most challenging configuration as we considered our highest Reynolds
number and highest Capillary number. The discrepancy between the cases
Dc = 30 and 60 is less pronounced − sometimes nonexistent − for less
deformable membranes and less inertial flows.

5.4 Motion and deformation of a single capsule

We consider the motion of a single capsule through a square duct at Ca =
0.075, 0.15, 0.25, 0.35 and Re = 0.01, 1, 25, 50, extending the investigation
carried out in a non-inertial framework by Zhu & Brandt [221]. In order to
establish the influence of the increasing effect of inertia on the motion and
the deformation of a single capsule, we first recall the overall dynamics of
a capsule moving through a duct corner in the Stokes regime, as detailed
in [221]. The capsule once released from its initial position moves along
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the center of the channel due to the symmetry of the flow far from the
corner. While approaching the corner, the capsule velocity decreases until
reaching a minimum in the corner region. The capsule experiences moderate
to high deformation (depending on the Capillary number considered) due to
the flow acceleration, and its velocity strongly increases; this phenomenon
being referred to as the overshoot of velocity. Further away from the corner,
the capsule moves in the downstream branch of the duct, relaxing to a steady
state (shape and velocity), and moving along the center of the duct.

We investigate the influence of the Reynolds number Re and the Cap-
illary number Ca on the dynamics and the deformation of the capsule, re-
porting the time evolution of its surface area A scaled by the initial surface
area of the capsule Asphere = 4πã2, as well as the velocity V of the capsule
centroid scaled by its equilibrium velocity Veq before the capsule enters the
corner region. In the remainder of this chapter and unless otherwise stated,
the time origin is chosen such that t = 0 when capsule velocity reaches a
global minimum, i.e. Vmin = V (t = 0). We borrow this convention from
Zhu & Brandt [221], as it corresponds to setting the time origin when the
capsule is located at the heart of the corner.

5.4.1 Influence of the Reynolds and Capillary numbers

To characterize the dynamics of the capsule as it flows through the corner,
we analyze the time evolution of the centroid velocity V and the surface
area A. Figure 5.4 shows the velocity of the capsule centroid for Ca ranging
from 0.075 to 0.35. Re is constant for each subfigure of figure 5.4. Con-
versely, figure 5.5 shows the same data as figure 5.4, but with each subfigure
corresponding to a constant Ca. From both figures, we observe a general
trend for all cases: the capsule approaches the corner with a steady velocity
Veq, then reaches a global minimum Vmin and a global maximum Vmax as it
flows through the corner, and relaxes back to Veq downstream of the corner.
Moreover, we observe in figure 5.4 that the velocity extrema increase with
increasing Ca. In the more inertial regimes especially, the maximum veloc-
ity deviation of the capsule at Ca = 0.35 is close to three times that of the
capsule at Ca = 0.075.

We note from figure 5.5 that the curves corresponding to Re = 0.01 and
Re = 1 practically overlap, indicating that the capsule motion in low inertial
regimes is very similar to that in the non-inertial regime. As the Reynolds
number is increased to 25 and 50, major deviations from the non-inertial
regime appear. First, as the capsule enters the corner area, a local maxi-
mum appears in the capsule velocity, which is independent of the Capillary
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number, and is about 1% greater than Veq at Re = 25 and 2% greater than
Veq at Re = 50. This local maximum is due to the migration of the capsule
across the centerline of the secondary channel: in this process the capsule is
located far away from the channel walls and is therefore less subject to their
confinement effect. Then, the minimum velocity Vmin is reached in the heart
of the corner. Interestingly, at small Ca, Vmin is observed to be independent
of the Re, as can be seen in figure 5.5a at Ca = 0.075. In contrast, in the
case of larger Ca the minimum velocity of the capsule increases slightly with
Re. A difference of about 4% is observed for Vmin as Re increases from 0.01
to 50 for both Ca = 0.25 and Ca = 0.35.

As the capsule exits the corner area and migrates to the channel cen-
terline, its velocity reaches its maximum value Vmax which increases with
increasing Re and Ca: at Ca = 0.075, Vmax increases by 3% between
Re = 0.01 and Re = 50 while at Ca = 0.35, Vmax increases by about 8%
between Re = 0.01 and Re = 50. Then, the capsule velocity relaxes back to
its equilibrium value and its relaxation time increases with increasing Re.
Interestingly, velocity undershoots are observed during the relaxation stage
in the inertial regime, which magnitude increases with Re. The relaxation
time does not depend on Ca.

The time evolution of the normalized capsule area A is shown in figure
5.6 for fixed Re and in figure 5.7 for fixed Ca. We observe that the area
presents a maximum Amax at around t = 1 before relaxing to its equilibrium
value Aeq. Unsurprisingly, figure 5.6 confirms that a large Ca, i.e. a highly
deformable capsule, results in a greater surface area than for lower Ca.
Figure 5.6 also shows that the magnitude of the maximum area increases
with Ca. Moreover, when large Ca are considered the time evolution of the
capsule area presents some undershoots that are more pronounced as Re is
increased. Additionally, figure 5.7 reveals that Re has a very strong influence
on the deformation of the capsule, especially at large Ca: at Ca = 0.075,
Amax/Aeq increases from 2% to 8% between Re = 0.01 and Re = 50, and
at Ca = 0.35 it increases from 8% to a staggering 22% between Re =
0.01 to Re = 50. In particular, at Ca = 0.35 the maximum capsule area
increases from 9% to 40% of the area of a sphere between the non-inertial
and the highly inertial regimes. These area deviations are very large and
are discussed further in the next section.

5.4.2 Maximum deformation of the capsule

The maximum surface area Amax of the capsule is presented in figure 5.8,
as a function of both the Reynolds number and the Capillary number. To
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(a) Re = 0.01 (b) Re = 1

(c) Re = 25 (d) Re = 50

Figure 5.4: Temporal evolution of the capsule centroid velocity V at fixed Reynolds
numbers.
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(a) Ca = 0.075 (b) Ca = 0.15

(c) Ca = 0.25 (d) Ca = 0.35

Figure 5.5: Temporal evolution of the capsule centroid velocity V at fixed Capillary
numbers.
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(a) Re = 0.01 (b) Re = 1

(c) Re = 25 (d) Re = 50

Figure 5.6: Temporal evolution of the capsule surface area A at fixed Reynolds numbers.
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(a) Ca = 0.075 (b) Ca = 0.15

(c) Ca = 0.25 (d) Ca = 0.35

Figure 5.7: Temporal evolution of the capsule surface area A at fixed Capillary numbers.

(a) Amax as a function of Re (b) Amax as a function of Ca

Figure 5.8: Maximum area Amax as a function of Re and Ca for a single capsule passing
through the corner.
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(a) Vmax (b) Vmin

Figure 5.9: Maximum (minimum) velocity Vmax (Vmin) as a function of Re and Ca for
a single capsule passing through the corner.

better analyze the trends in this figure, we also report the maximum area at
intermediate Reynolds numbers, namely at Re = 12.5 and 37.5. The data
reported in figure 5.8 clearly exhibits a double linear scaling of Amax with
both Ca and Re as long as Ca is below 0.35 − at Ca = 0.35, the shape of
the curve Amax(Re) is slightly concave. The slope of the scaling is about
0.003 for Amax(Ca) and 1.12 for Amax(Re). This means that the capsule
maximum deformation responds proportionally to the Capillary number,
but also to the Reynolds number. To our knowledge, this is the first time
such a trend has been reported and established for low (Re = 1) to moderate
(Re = 12.5, 25, 37.5, 50) inertial regimes. We believe that this result can be
used as a predictive tool for many studies involving single capsules travelling
through duct corners, as the maximum deformation observed for a capsule
is a measure of its mechanical integrity, which is of major interest in many
microfluidic applications.

Additionally, we present in figure 5.9 the maximum and minimum ve-
locity of the single capsule flowing through the corner. In the non-inertial
regime, the maximum velocity of the capsule increases with Ca, as shown
in figure 5.9a. In inertial conditions we observe that Vmax increases for Re
ranging from 1 to 50. The increase in Vmax between Re = 1 and Re = 50 is
significant in figure 5.9a, especially for large Ca. For instance, at Ca = 0.35,
Vmax increases by about 8% between the non-inertial and the highly inertial
regimes. We then consider the evolution of the minimum velocity Vmin for
a single capsule at various Ca and Re in figure 5.9b. In general, we observe
that the minimum velocity decreases with Ca in both the non-inertial and
the inertial regimes for Re ≤ 25. In figure 5.9b, we also observe a non-
monotonous behavior of Vmin at low inertia and at sufficiently high Ca: for
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Ca ≥ 0.15, Vmin first decreases with increasing Re, reaching a minimum
for Re = 12.5, before increasing sharply at Re > 12.5. Overall, we observe
from figure 5.9 that the presence of inertia tends to increase both velocity
extrema of the capsule, especially at large Ca.

A quantity of practical interest to experimentalists is the maximum stress
experienced by the capsule, as it can be used to predict a priori if a given
geometry can induce plastic deformation or even breakup of the capsule
membrane [76]. More specifically, it is the largest eigenvalue σ̃2 of the stress
tensor σ̃ that can bring insight into the mechanical integrity of the mem-
brane. In figure 5.10, we show the maximum and average values of σ̃2 over
the membrane surface as the capsule approaches and flows through the cor-
ner at Ca = 0.35 and Re = 1, 25 and 50. We observe that σ̃2, avg follows a
trend very similar to that of the capsule area observed in figure 5.7d: σ̃2, avg
varies smoothly with time, presents a maximum near t = 1 and a local min-
imum near t = 2.5, and the value of the maximum deviation from steady
state nearly doubles between the low and moderate inertial cases Re = 1 and
Re = 50. We also note that the steady state value of σ̃2, avg prior to entering
the corner is independent of Re, as was observed in the case of the capsule
surface area in figure 5.7d. In particular, we find by comparing figures 5.7d
and 5.10 that at Ca = 0.35, a non-dimensional area A of about 1.14 leads to
an average non-dimensional membrane stress of about 0.4. The steady state
of the maximum stress σ̃2,max, however, increases by about 40% between
the low inertial case (Re = 1) and the moderate inertial cases (Re = 25,
50). Inside the corner, σ̃2,max increases by nearly 75% between Re = 1
and Re = 50, confirming that a capsule in a moderate inertial regime has a
higher risk of breakup than in a low inertial regime.

It is worth noting that for all Re, the value of the maximum stress
σ̃2,max is about double that of the average stress σ̃2, avg: since we showed
previously that σ̃2, avg is closely related to the capsule area − a quantity that
is relatively easy to measure experimentally −, this observation can be used
by experimentalists as a rule of thumb to estimate the maximum stress in
the capsule membrane and assess the mechanical integrity of the membrane.

5.4.3 Evolution of the capsule shape

We now illustrate the temporal evolution of the capsule travelling through
the corner. Figure 5.11 shows the outline of the capsule in the symmetry
plane z = 0 for successive discrete times. The capsule outlines are given for
Ca = 0.075 and Ca = 0.35 and Re = 0.01, 25 and 50. Prior to entering
the corner, the capsule adopts a steady shape that is determined by the
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Re = 50

Re = 25

Re = 1

Figure 5.10: Left: Maximum and average tensions in the capsule at Ca = 0.35 and
Re = 1, 25 and 50. Right: Capsule shape colored by σ̃2 when σ̃2,max reaches its maximum.

confinement of the walls. In the case of Ca = 0.35, we observe the well-
known “parachute” shape. Upstream of the corner, the trajectory of the
capsule coincides with the centerline of the primary (vertical) channel. As
the capsule flows through the corner, the capsule deviates from the channel
centerline: in the non-inertial regime, Zhu & Brandt [221] showed that the
capsule trajectory closely matches the flow streamlines. We obtain the same
conclusion in the inertial regime. When inertia is considered, the capsule
trajectory crosses the horizontal centerline of the secondary channel and
comes increasingly close to the upper wall as Re increases, before relaxing
to the channel centerline.

Figures 5.11a and 5.11b show clear differences in the effects of Ca in
the Stokes regime. Increasing Ca from 0.075 to 0.35 causes the equilibrium
shape of the capsule to change from an slightly deformed spheroid to a
concave “parachute” shape. For a small Ca = 0.075, the equilibrium shapes
of the capsule remain similar as Re increases from Re = 0.01 to Re = 50 (see
figures 5.11a, 5.11c, and 5.11e). However, the deformation of the capsule
becomes more evident inside the corner at higher Re, particularly in figure
5.11e. After passing the corner, the capsule shape returns to its steady
spheroid shape observed in the Stokes regime for all values of Re. In the case
of a high Ca = 0.35, we observe that the equilibrium shape of the capsule
is more and more concave as Re increases. Inside the corner, the capsule
is highly elongated and presents an increasingly long tail for increasing Re
− e.g. figure 5.11f in the case of Re = 50. In the highly inertial regime,
strong lubrication interactions occur between the capsule and the top wall,
resulting in a flat top surface.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Sequence of Capsule outlines for different Ca and Re. The time between
each frame is t = 1.5.
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(a)

(b)

Figure 5.12: Outlines of a single capsule passing a corner with (a) maximal area A and
(b) maximal velocity vmax at various Re and Ca.
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In figures 5.12a and 5.12b, we present the single capsule outline with the
maximum area Amax and the maximum velocity Vmax inside the corner for
all the cases investigated in this section. Inside the corner, the maximum
area of the single capsule is reached when it approaches the upper wall
and it is quickly followed by the maximum velocity. From figures 5.12a
and 5.12b, we observe in particular that a high Re leads to an elongation
of the capsule in the streamwise direction, while a high Ca increases the
concavity of the capsule. Moreover, we note that the centroid of the capsule
moves closer to the rim of the outline at high values of Ca: note that the
centroid drawn in figures figure 5.11-5.12b corresponds to the centroid of
the three-dimensional capsule, not to that of the two-dimensional outline.
The results shown in figures 5.11-5.12b indicate that Ca has a significant
effect on capsule deformation, while Re has a more pronounced effect on
the trajectory of the capsule as well as its deformation resulting from the
lubrication layer against the top wall of the corner. In particular, at high
Re, the capsule undergoes significant stretching, which may cause damage
or even rupture in microfluidic devices. Understanding the effects of Re on
capsule deformation and the resulting damage is crucial in designing efficient
and reliable microfluidic devices.

5.4.4 Discussion on the Stokes regime

We observe in figures 5.7 a surprising, non-monotonous behavior of the cap-
sule area around Re = 1: at large Ca, the area of the capsule is smaller
at Re = 1 than at Re = 0.01 and Re = 25. Additionally, in figure 5.7a
the steady area of the capsule at Re = 0.01 and Ca = 0.075 downstream
of the corner is about 1% lower than the initial spherical area of the cap-
sule, indicating a small loss of the internal capsule volume. The cause of
these observations may be related to the limitations of the FTM coupled
with a sub-optimal choice of numerical parameters in the case of Re = 0.01
only. Indeed, the immersed boundary method is known to conserve vol-
ume asymptotically rather than to machine precision. In earlier IBM stud-
ies involving capsules, the volume loss is always small, typically below 1%
[15, 129, 207, 208]. Moreover, Stokes conditions are known to be challenging
for PDE-based incompressible Navier-Stokes solvers, as the matrix inverted
in the pressure-Poisson problem is less well conditioned at low Re. While
it is worth noting that the capsule area in the Stokes regime should be in-
terpreted with caution, these limitations only affect the capsule area and
not the centroid velocity. Moreover, our solver was extensively validated in
Stokes conditions in [91] and showed excellent agreement with the BIM as
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well as other FTM solvers. As such, while further investigation should be
conducted in the Stokes regime, it cannot be excluded that at high Ca the
capsule area at Re = 0.01 is physically slightly greater than that at Re = 1.
Finally, the main focus of the present work is to investigate the inertial mo-
tion and deformation of capsules through a sharp corner, i.e. in conditions
where our FTM solver does not suffer from the limitations outlined above.

5.5 System of two capsules

In this section, we consider two identical capsules flowing through the corner
as we vary the normalized interspacing distance d = d̃/2ã − 1 between the
capsules as well as the Reynolds and Capillary numbers. Lu et al. [129]
previously considered the binary interaction of capsules flowing through a
T-junction: they showed that when d0 ≥ 1.3 the trailing capsule has min-
imal impact on the motion of the leading capsule. In contrast, in their
T-junction geometry Lu et al. observed that the motion of the trailing cap-
sule is significantly affected by the presence of the leading capsule. To gain
insight into the physical features relevant to capsule interactions through
a corner in the inertial and non-inertial regimes, we select small values for
the normalized interspacing distance d0 = 1, 1/2, and 1/4 and we examine
phenomena such as migration, dynamics and deformation of the leading and
the trailing capsules.

5.5.1 Qualitative analysis: trajectory and capsule shape

We first analyze the trajectory and the qualitative shapes of the pair of
capsules as they flow through the corner. Figure 5.13a shows the trajectory
of the capsules at Re = 0.01, 25 and 50 and Ca = 0.15 and 0.35. We note
that all curves corresponding to the same Ca overlap: Ca has no impact on
the path of either the leading or the trailing capsule. Likewise, we observe
no significant difference in the trajectories of the leading and the trailing
capsules, unlike the strikingly different paths reported in the case of a T-
junction [129]. In fact, the key parameter that controls the capsule trajectory
is the Reynolds number. AsRe increases, the inertia drives the capsule closer
to the upper channel wall, as observed in Section 5.4 in the case of a single
capsule. We then illustrate the capsule shape on the symmetry plane z = 0
in figure 5.13b for the most deformed capsule configuration corresponding
to Ca = 0.35 and Re = 50 with an initial interspacing distance d0 = 0.25.
We compare the outlines of the leading and the trailing capsules to that of
a single capsule in the same conditions. Qualitatively, the deformation of
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(a)

(b)

Figure 5.13: (a) Trajectory of the two capsules at different Ca and Re. (b) Outlines of
the leading and trailing capsules at Ca = 0.35, Re = 50, d0 = 0.25, with comparison to a
single capsule.
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(a) (b)

Figure 5.14: Temporal evolution of the velocity V and the area A of capsules at Ca =
0.35, Re = 50 with d0 = 0.25: a comparison of the leading, trailing and a single capsule.

interacting capsules is not significantly different than that observed in the
case of a single capsule. Perhaps more surprisingly, the qualitative outlines of
the leading and the trailing capsules are also very similar, almost overlapped,
even in the strongly interacting configuration corresponding to d0 = 0.25.
Note that this qualitative shape analysis relies on the outline of the capsule
in the plane of symmetry z = 0, while the actual three-dimensional shape
of the leading and trailing capsules may differ more strongly.

5.5.2 Quantitative analysis: velocity and membrane area

We now compare the temporal evolution of the velocity of the centroids of
the capsules as well as the time evolution of their surface areas, as plotted
in figure 5.14. To simplify the identification of interaction features, we first
focus on the most deformed configuration corresponding to Ca = 0.35, Re =
50 and d0 = 0.25. For reference, we also plot the evolution of a single
capsule under the same conditions in red. Throughout the remainder of this
chapter, and unless otherwise stated, the velocity of interacting capsules is
normalized by the equilibrium velocity Veq of a single capsule for the same
Capillary and Reynolds numbers. This normalization choice allows for an
unbiased comparison between the velocities of the leading and the trailing
capsules. In this section we also denote the reduced velocity of the single
capsule by Vs, that of the leading capsule by Vl and that of the trailing
capsule by Vt. Similarly, we denote by As, Al, At the normalized areas of
respectively the single, leading and trailing capsules.

In figure 5.14a, we observe that the velocity of the leading capsule is
affected by the presence of the trailing capsule before it reaches the corner,
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as it is about 1% higher than that of a single capsule. However, the extrema
of Vl as it flows through the corner closely match those of Vs. After the
corner, Vl is about 2% larger than Vs but slowly relaxes back to Vs further
downstream. With regards to the trailing capsule, we note that its velocity
is more markedly affected by the presence of the leading capsule. Prior to
reaching the corner, Vt is about 1% lower than Vs, but inside the corner its
minimum value is 4% lower than Vs. However, the maximum of Vt is identical
to that of both Vl and Vs. Downstream of the corner, Vt quickly relaxes back
to Vs and maintains a similar value thereafter, eventually converging to Veq.
The time evolution of the surface areas of the pair of capsules is shown
in figure 5.14b. The normalized area of the leading capsule Al is clearly
influenced by the presence of the trailing capsule, as was observed above
in the case of its velocity. The steady and maximum areas of the leading
capsule are about 2% lower than that of the single capsule. In contrast, the
steady area of the trailing capsule closely matches that of the single capsule
upstream and downstream of the corner, while its maximum value is about
1% higher than that of the single capsule. We postulate that the small
interspacing distance between the two capsules disturbs the wake behind
the leading capsule, which tends to mitigate its deformation and therefore
decreases its surface area. Conversely, as the wake of the trailing capsule is
unaffected, the discrepancies between its area and that of the single capsule
are less pronounced.

We then present the time evolution of the velocity and area of the leading
and the trailing capsules at various Ca, Re and d0. We first focus on the
velocity of the capsules, displayed in figure 5.15 for Ca = 0.15 and 0.35 and
for d0 = 0.5 and 1. The velocity of both capsules displays a minimum at
t = 0 and a maximum at t ≈ 2 at Ca = 0.15 and Ca = 0.35. The extrema
of the velocity are more pronounced as Ca increases. The effects of the
initial interspacing distance d0 on these extrema are less evident but still
present: the velocity maxima of both the leading and the trailing capsules
are increased by about 1% as d0 is halved from 1 to 0.5. Interestingly, the
relaxation time of Vt to Veq is significantly reduced when compared to that
of Vl: about 3 time units in the case of Vt with respect to more than 10 time
units in the case of Vl. Capsule velocities in the inertial regimes at Re = 25
and 50 and at Ca = 0.15 and Ca = 0.35 are plotted in figure 5.15b and figure
5.15c for d0 = 1 and 0.25, respectively. The results are similar to that of the
non-inertial regime: Ca enhances the velocity deviations and the extrema
are more pronounced in the case of the trailing capsule. Surprisingly, we note
that figure 5.15b and figure 5.15c display very similar behaviors: therefore,
the interspacing distance does not seem to impact the capsule velocities
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(a) Re = 0.01

(b) d0 = 1 (c) d0 = 0.25

Figure 5.15: Temporal evolution of V of the leading and trailing capsules at different
Ca, Re and d0.
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d0 Re = 0.01 Re = 25 Re = 50

1
Ca = 0.15 1.065 1.138 1.193
Ca = 0.35 1.263 1.334 1.399

0.5
Ca = 0.15 1.065 1.135 1.186
Ca = 0.35 1.247 1.323 1.383

0.25
Ca = 0.15 1.068 1.129 1.180
Ca = 0.35 1.236 1.308 1.379

Table 5.1: Maximum area Amax of the leading capsule at different Ca, Re and d0.

d0 Re = 0.01 Re = 25 Re = 50

1
Ca = 0.15 1.068 1.143 1.201
Ca = 0.35 1.271 1.342 1.417

0.5
Ca = 0.15 1.070 1.144 1.204
Ca = 0.35 1.277 1.345 1.414

0.25
Ca = 0.15 1.069 1.148 1.204
Ca = 0.35 1.277 1.344 1.41

Table 5.2: Maximum area Amax of the trailing capsule at different Ca, Re and d0.

inside the corner: its effects are bounded to the capsule velocities upstream
and downstream from the corner. We will come back to this observation in
Section 5.5.3.

When analyzing the capsule areas for varying Re, Ca and d0, a similar
behavior is found: the area of the trailing capsule is consistently greater than
that of the leading capsule, and increasing Capillary and Reynolds numbers
and decreasing the initial interspacing distance enhance this phenomenon.
In particular we report in Table 5.1 the maximum areas of the leading cap-
sule and in Table 5.2 that of the trailing capsule. As can be seen from Table
5.1 and Table 5.2, the maximum area of the leading capsule exceeds that of
the trailing capsule by up to 5%. The full time-dependant data is provided
in Appendix D.1.

5.5.3 Time evolution of the interspacing distance

We now analyze the time evolution of the interspacing distance between the
two confined capsules considered in this section. Figure 5.16 shows the time-
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dependent interspacing distance for Ca = 0.15 and 0.35, Re = 25 and 50
and d0 = 1, 0.5 and 0.25. In this figure, we note that in all cases, the inter-
spacing distance decrease immediately after the trailing capsule is released.
This is due to the fact that upon release, the trailing capsule is spherical
and therefore located farther away from the channel walls than is the leading
capsule, resulting in its initial acceleration before a steady shape is found
− typically within less than five time units. In the case where d0 = 1, the
interspacing distance d is steady until the leading capsule approaches the
corner, reaches a minimum then a maximum value inside the corner and
becomes steady again as the trailing capsule leaves the corner region. In-
terestingly, the steady interspacing distance after the corner is up to 10%
greater than its steady value prior to the corner, suggesting that the cor-
ner separates the two capsules. Moreover, the initial interspacing distance
is greater in the case Re = 25 than in the case Re = 50: this is only an
artifact of our release mechanism. Indeed, the steady “parachute” shape of
the capsule is deployed faster at Re = 50 than at Re = 25, leading to a
shorter initial acceleration phase of the trailing capsule towards the leading
capsule at Re = 50 than at Re = 25. When d0 = 0.5 and d0 = 0.25, we
observe that the interspacing distance steadily increases until the capsules
reach the corner region where it displays the same behavior as in the case
of d0 = 1, and continues to increase downstream of the corner. While a
steady value of d is not clearly reached within the considered time range,
we can extrapolate the trend and conclude that the interspacing distance
seems to saturate to values ranging from 0.6 to 0.8 depending on Re, Ca and
d0. Therefore, the pair of confined capsules we consider exhibit a minimum
stable interspacing distance dmin. Moreover, we note that the slope of d is
greater in the case of lower initial interspacing distances, suggesting that the
relative velocity of the capsules is a function of their interspacing distance.
To investigate further this behavior, we show in figure 5.17 the velocity of
the two capsules at Ca = 0.35, Re = 50 and d0 ranging from 0.25 to 1. We
observe that the velocity of the trailing capsule is lower than that of the
leading capsule prior to entering and downstream of the corner, and that
the velocity difference increases with decreasing interspacing distance. This
velocity difference confirms the above observations in terms of interspacing
distance, in particular that a lower interspacing distance results in a greater
relative velocity between the two capsules, i.e. an enhanced repulsive behav-
ior. Moreover, we note in figure 5.17 that the difference in velocity minima
between the leading and the trailing capsules is always greater than the dif-
ference between their velocity maxima. As a result, the residence time of
the trailing capsule inside the corner region is always greater than that of
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(a) Ca = 0.15 (b) Ca = 0.35

Figure 5.16: Temporal evolution of d for different initial interspacing distance d0 and
Reynolds number Re.

Figure 5.17: Effects of the initial interspacing distance d0 on the evolution of the capsules
velocities V at Ca = 0.35, Re = 50.

the leading capsule, and the corner tends to separate the pair of capsules.
The present analysis of the binary interaction of capsules through a cor-
ner reveals that the two considered capsules do interact in this geometry,
affecting their motion and deformation. In particular, the trailing capsule
tends to be more deformed than the leading capsule, and the corner tends
to separate the pair of capsules. A natural question that arises is that of
the accumulation of such effects if more than two capsules are considered.

5.6 Train of ten capsules

In this last section, we investigate the behavior of a train of ten capsules
flowing through the corner. We insert each capsule using the same procedure
employed in the previous section: a new initially spherical capsule appears at
a distanceDc = 30 radii from the corner as soon as the preceding capsule has
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(a) Ca = 0.15 (b) Ca = 0.15

(c) Ca = 0.25 (d) Ca = 0.25

(e) Ca = 0.35 (f) Ca = 0.35

Figure 5.18: Time evolution of the reduced areas and velocities of ten capsules atRe = 50
and d0 = 1/8 for Ca = 0.15, 0.25 and 0.35.
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(a) Ca = 0.15 (b) Ca = 0.25

(c) Ca = 0.35

Figure 5.19: Temporal evolution of d for a train of 10 capsules at Re = 50 and d0 = 0.125
for (a) Ca = 0.15, (b) Ca = 0.25 and (c) Ca = 0.35.

Figure 5.20: Amax as a function of the capsule number.
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(a) (b)

Figure 5.21: (a) Vmax and (b) Vmin as a function of the capsule number.

advanced by a reduced distance d̃ = 2ã(1 + d0). The capsules are removed
from the computational domain when they are less than one initial diameter
away from the outflow boundary. Our goal is to determine if the findings
of the previous binary capsule analysis accumulate when more than two
capsules are considered, especially with regards to the increased surface area
of the capsules and the separating effect reported in Section 5.5. As such,
we plot in figure 5.18 the normalized area and velocity of each capsule of the
train at Re = 50, d0 = 0.125 and Ca ranging from 0.15 to 0.35. The same
figure obtained in the case of d0 = 1 is provided in Appendix D.2. In figure
5.18, the darkness of the color corresponds to the position of the capsule in
the train: darker means increasing capsule number i.e. further downstream
along the capsule train. As mentioned in Section 5.5, the initial peaks in the
area and velocity of the capsule are insertion artifacts and do not contribute
to the physics that is the focus of this section. We observe in figure 5.18
that the behavior of the last capsule is significantly different than that of
the rest of the train. In Section 5.5 we hypothesized that the difference in
areas of the leading and the trailing capsules is due to the fact that the wake
of the leading capsule is significantly affected by the presence of the trailing
capsule. The present observation in figure 5.18 corroborates this statement:
all of the capsules in the train see their wake affected by a trailing capsule,
except in the case of the last capsule. As a result, its deformation is greater
and extends closer to the channel walls, thus decreasing its velocity. We
also remark in figure 5.18 that this effect is enhanced with increasing Ca.
While noteworthy in the case of a pair of capsules, this effect is less pertinent
to the study of a train of capsules, as only the core of the capsule train is
relevant to typical microfluidic applications. As such, in the remainder of
this section our analysis is focused on the first ninth capsules of the train.
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As expected, a steady state is reached in the straight channel prior to
the corner for each capsule and for all Ca. While the steady area remains
constant with increasing capsule number, i.e. as we move further down-
stream in the train of capsules, we observe that the velocity of the capsules
decreases. In particular the difference between the steady velocity of the
first and ninth capsules increases with increasing Ca. As the capsules enter
the corner region, they display the familiar pattern previously described in
Section 5.4 and Section 5.5, before relaxing to steady values. The shape
of the deviation pattern is strikingly similar across different capsules of the
train, regarding both the velocity and the area of the capsules, except that
they are shifted in time and magnitude. More precisely, the area curves are
shifted upwards with increasing capsule number while the velocity curves
are shifted downwards with increasing capsule number. As a result, the
maximum area of the capsule increases and the velocity extrema decrease
with increasing capsule number. This behavior is more pronounced as Ca
increases. Additionally, we compare in figure 5.19 the normalized interspac-
ing distance d between each pair of capsules in the train. In figure 5.19, each
curve is shifted in time such that t = 0 corresponds to dmin inside the cor-
ner. For all Ca, we observe that the interspacing distance d(1, 2) between
the first and the second capsules increases to a steady value close to 0.5,
and that the corner has marginal effects on the downstream evolution of
d(1, 2): this behavior is identical to the case of two capsules studied in the
previous section. However, as we move downsteam in the train of capsules,
d increases slower and slower prior to the corner until it remains constant
for capsule numbers greater than 7, at a steady value d ≈ 0.7 that decreases
only marginally with increasing Ca. After the transient regime due to the
corner, d(i, i+1) for capsule numbers i greater than 7 reaches a steady state
that is slighly higher than prior to entering the corner. In other words, the
corner tends to increase the interspacing distance, and therefore exhibits a
separating effect. This seperating effect is observed regardless of the initial
interspacing distance d0, as was the case in the previous section when only
two capsules were considered.

Finally, in order to investigate further the influence of the capsule number
on the capsule dynamics, we plot in figures 5.20-5.21 the maximum area as
well as the maximum and minimum velocities of each capsule of the train
for varying Capillary numbers and interspacing distances. The difference in
minimum velocity (respectively, maximum velocity) between the first and
the ninth capsule is about 15% (respectively, about 7%) at Ca = 0.35 while
it is about 11% (respectively, 2%) at Ca = 0.15. Similarly, the difference
in maximum area between the first and the ninth capsule is about 4% at
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Ca = 0.35 and less than 1% at Ca = 0.15. These results correspond to
d0 = 0.125, while in the case of d0 = 1 only deviations lower than 1% are
observed in the extrema of the capsule area and velocity (except in the case of
Ca = 0.35 for which velocity deviations of 2% are observed). The very small
deviations observed in the case d0 = 1 indicates that for this interspacing
distance the capsules interact very weakly. As such, there exist a critical
interspacing distance dc below which capsule interactions are observed, with
0.125 < dc < 1.

The fact that dc is less than 1 can be surprising, as a normalized in-
terspacing distance of d0 = 1 would typically be classified as a strongly
interacting regime in other geometries, e.g. in the T-junction investigated
by Lu et al. [129]. The main reason for the low interaction we observed
is likely due to the short residence time of the capsules in the corner re-
gion. Indeed, Lu et al. showed that the residence time is determinant in
the path selected by the capsules in a T-junction geometry. Another reason
for such a low critical interspacing distance is related to the very confined
configuration we study: the capsule shape and behavior is primarily due to
the presence of the walls, while the small disturbances of the flow field due
to the other capsules only marginally contribute to each capsule dynamics.
Future studies could explore the dynamics of a train of capsules in a wider
channel, i.e. in a less confined configuration, where each capsule could be
more influenced by the wake disturbances of their preceding neighbor.

5.7 Conclusion

In the present work, the inertial and non-inertial dynamics of three-dimen-
sional elastic capsules flowing through a sharp corner are investigated. The
capsule trajectory, area, velocity and membrane stress are analyzed in the
cases of one, two and a train of ten capsules released upstream of the cor-
ner. The channel Reynolds number ranges from 0.01 to 50, the Capillary
number representing the ratio of viscous stresses over elastic stresses ranges
from 0.075 to 0.35 and the initial normalized interspacing distance between
two capsules is varied from 1 to 0.125. The goal of this study is to help pro-
vide practical guidelines in order to anticipate capsule breakup and estimate
throughput in inertial microchannels.

The case of a single capsule with no inertia was previously studied by
Zhu & Brandt [221], who reported that the capsule follows the flow stream-
lines closely regardless of the Capillary number. In inertial flows, we found
that this statement is still valid for all considered Reynolds and Capillary
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numbers. As the streamlines of the inertial flow cross the centerline of the
secondary channel − the horizontal channel downstream of the corner −, the
capsule position is increasingly close to the top wall for increasing Reynolds
number, especially in the case of large Capillary numbers. However no
collision between the capsule and the wall of the secondary channel was
observed thanks to strong lubrication forces. In their study, Zhu & Brandt
also analyzed the velocity of the capsule centroid and the area of the capsule
membrane: they found that the capsule velocity decreases in the corner and
increases immediately after the corner, with an overshoot increasing with
membrane deformability. The area of the capsule was also found to also
reach a maximum slightly shifted in time with respect to the minimum of
velocity. In the inertial regime, we observed that this behavior is enhanced
as the Reynolds number increases. However our results at Re = 1 do not
differ significantly from results obtained in the non-inertial regime, which
corroborates the same observation that was made by Wang et al. [207, 208].
Moreover, at sufficiently high inertia, capsule areas lower to equilibrium ar-
eas are observed as the capsule relaxes to its steady state. In other words,
immediately after the corner the capsule oscillates around its steady shape.
This phenomenon is enhanced as the Capillary number increases. Addition-
ally, we reported that the relation between the maximum area Amax of the
capsule and the Reynolds number is linear as long as the Capillary number
is kept below 0.35. At Ca = 0.35, the relation between Amax and Re is
not perfectly linear and the curve Amax(Re) is slightly concave. Moreover,
from Re = 1 to Re = 50, the maximum area increases nearly linearly over
the full range of Ca. At Ca = 0.35, we compared the membrane stress to
the capsule area and found that (i) the time evolution of the average stress
presents a strong correlation to that of the membrane area, and (ii) in our
configuration, the value of the maximum stress is double that of the average
stress. As a result, observing the capsule area experimentally can provide
reliable insight into the average stress as well as an estimate of the capsule
maximum stress. This finding is of primary importance in the design of
microfluidic devices where capsule breakup is to be avoided, as well as in
the development of targeted drug delivery methods for which a controlled
capsule breakup is sought.

We then investigated the interaction of several capsules in the corner
geometry. First, two capsules are considered with varying initial interspacing
distances. Similar to the case of a single capsule, neither the trajectory of
the leading nor of the trailing capsule is observed to significantly deviate
from the flow streamlines. However the velocity of the trailing capsule is
found to be lower than that of the leading capsule as well as that of a single
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capsule at the same Reynolds and Capillary numbers. Similarly, the velocity
of the leading capsule is greater than that of a single capsule in the same
conditions. In contrast, inside the corner the area of the trailing capsule
is found to be larger than that of the leading capsule and of the single
capsule in the same conditions. However, in the configuration we consider
where confinement is strong, the magnitude of these effects is small even
for capsules located very close to each other: the velocity of the leading
and trailing capsules only deviates by a few percents from that of a single
capsule. Then, the time evolution of the interspacing distance d between the
pair of capsules was analyzed. Interestingly, we found that capsules initially
located at d0 ≤ 0.5 or less tend to separate. This suggests that there exists
a minimum stable gap dmin between two confined capsules. A systematic
analysis of this effect is left for future studies. Next, we examined the case
of a train of capsules and sought to determine whether the effects observed
with a pair of capsule accumulate. While no interaction occurs for a large
initial interspacing distance d0 = 1, we found that in the case d0 = 1/8, the
steady and extremum areas of the trailing capsules increase by up to 5%
and eventually saturate at the tail of the train, around the ninth capsule.
In all cases, the corner is found to separate the pair of capsules as well as
the capsule train, which can be further evidenced from the analysis of the
time evolution of the capsule velocities inside the corner region.

We believe that the present work is a step forward towards providing
practical guidelines to avoid capsule breakup in inertial and non-inertial
microfluidic experiments. Future works could study capsule membranes ex-
hibiting a strain-hardening elastic behavior, e.g. as described by the Skalak
law [184], as well as vary the confinement ratio β = 2ã/W̃ in order to con-
sider high-throughput microfluidic devices. In the case of lower confinement
ratios in particular, we expect to see stronger capsule interactions along
with cross-stream capsule migration inside and downstream of the corner.
Finally, the present work could also be useful to develop membrane char-
acterization techniques, where viscoelastic membrane properties could be
inferred from the time-dependant evolution of a capsule of interest through
a corner.
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Chapter 6

Towards a fully Eulerian
adaptive solver for immersed
elastic capsules

6.1 Introduction

In the previous chapter, the front-tracking method was presented together
with its Lagrangian discretization of the capsule. This triangulation allowed
to compute membrane-related quantities such as strains and stresses in a rel-
atively straightforward fashion and to a high level of accuracy. However, the
introduction of the membrane triangulation comes at the expense of commu-
nications between the Lagrangian mesh and the Eulerian mesh, achieved by
the previously introduced immersed boundary method. The consequences
of the back and forth interpolations between the two meshes are multiple.
First, the global spatial order of accuracy of the method is reduced to one
in the general case. Second, an efficient parallelization of the FTM on adap-
tive grids is difficult due to the non-trivial Eulerian domain decomposition
leading to many IBM stencils existing on several processors, as discussed in
Section 4.6. Another limitation of the FTM is of physical consideration: un-
like other Eulerian methods, the FTM does not conserve the volumes of the
inner and outer fluids to the machine precision, but rather asymptotically.
This means that after a very long simulation time, the object of interest
represented by the FTM − such as a bubble, a droplet or a capsule − could
gain or lose a significant fraction of its inital volume and mass.

The field of interfacial dynamics, which includes the FTM, is home to
a second class of methods that don’t share the same limitations. In these
so-called Eulerian methods, the immersed object is described using a scalar
field. In the Volume Of Fluid (VOF) method introduced by Hirt & Nichols
[78] and popularized by Brackbill et al. [25], the field c is defined as the
volume fraction of the inner phase. In the level-set method introduced by
Sussman et al. in the context of droplet dynamics [191] and later extended
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to fluid-structure interaction by Gibou et al. [60, 61], the field ϕ is defined
such that the interface is exactly the contour-line ϕ = 0. In both methods,
the field c or ϕ is advected using the local velocity field: in the VOF method
in a conservative fashion; in the level-set method in a non-conservative fash-
ion. In the case of the VOF method, differentiating the interface geometry
− and in fact, finding the precise location of the interface itself − is a com-
plex matter involving a temporary hyperbolic tangent-shaped smoothing of
the volume fraction field c, or so-called height functions computed on large
stencils and notoriously difficult to implement [151, 153, 171]. The level-set
method, however, has the advantage of providing an analytical expression for
the interface, thus greatly reducing the challenge of computing derivatives
of the geometry needed to express interfacial stresses.

While the VOF and the level-set methods were initially introduced to
simulate surface tension-driven flows, both have been extended to immersed
capsules and vesicles, and even to fluid-structure interaction problems in-
volving immersed elastic solids. Regarding the latter application, Sugiyama
et al. [189] introduce a method relying on VOF framework, while Kamrin
et al. [97, 103, 104, 196] introduce the Reference Map Technique (RMT)
based on the level-set formulation. In both methods, the elastic strains are
accessed by advecting a field quantity: the left Cauchy-Green deformation
tensor B in the work of Sugiyama et al., and the so-called “reference map”
ξ in the work of Kamrin et al. Loosely speaking, the role of B and ξ is
to describe by how much the configuration of the elastic solid has deviated
from its initial strain-free configuration, at each instant t. This information
is then used in the constitutive elastic law of the deformable solid in order
to compute the stresses. The main challenge for both methods is to limit
numerical diffusion during the advection or B or ξ, otherwise the elastic
solid can forget some of its initial strain-free configuration. This problem
is handled by using high-order WENO (Weighted Essentially Non Oscilla-
tory) schemes in Sugyiama’s method; and in the RMT, by creating a ghost
region into the fluid where the solid strains are extended. With regards to
Eulerian formulations applied to immersed capsules and vesicles, Cottet &
Mâıtre present two-dimensional simulations of elastic capsules based on the
level-set method [37, 38]. In their formulation, the elastic and the bend-
ing forces are derived from energy principles, and their pioneering work has
paved the way for the emergence of the methods of Sugiyama and Kamrin
for immersed elastic solids. In the early 2010, Ii et al. extended Sugiyama’s
VOFmethod to consider an elastic capsule as opposed to a three-dimensional
solid [92–94]. They were able to quantitatively reproduce classical results of
capsule dynamics, such as the deformation of an elastic capsule in a shear
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flow that we presented in figure 4.5. Moreover, they demonstrated that
their fully Eulerian solver scales very well with the number of capsules and
Eulerian grid cells, by simulating 5 · 106 red blood cells on over 600,000 pro-
cessors [188]. Their work demonstrates that the fully Eulerian formulation
is a viable description of biological capsules. Moreover, at the price of a
more challenging differentiation of the membrane geometry and of a slight
diffusion of its strains, using a fully Eulerian method based on the VOF
formulation has the potential to: (i) describe the capsule in a conservative
fashion, (ii) require lower implementation efforts due to the absence of mem-
brane triangulation, and (iii) provide an elegant and efficient parallelization
paradigm, as only field quantities described on the Eulerian grid are com-
municated between processors. Moreover, even though the convergence of
the implementation of Ii et al. was first order in space [92], the fully Eule-
rian formulation does not present an order degenerecence due to the IBM,
and there is no theoretical argument a priori forbidding this formulation to
converge with second-order accuracy.

In light of the stengths of the fully Eulerian formulation based on the
VOF framework, we present in this chapter an attempt to reproduce the
results from Ii et al. [92] on an adaptive grid in the Basilisk platform. In
Section 6.2 we describe the fully Eulerian formulation of the fluid-membrane
problem, with an emphasis on the computation of the membrane strains
and stresses. Then, we present our implementation strategy in Section 6.3
in order to supplement Basilisk with the fully Eulerian membrane solver.
Validation cases are shown in Section 6.4. We conclude by summarizing our
results and discussing their implications in Section 6.5.

6.2 Governing equations

6.2.1 Eulerian framework

Similar to the front-tracking method previously introduced in Chapter 4, in
the Eulerian framework the one-fluid Navier-Stokes equations Eq. (4.1−4.2)
are solved, where the body force fb in Eq. (4.1) accounts for the membrane
stresses exerted on the fluid. In the front-tracking method, the body force fb
is computed by regularizing point forces located on the nodes of a Lagrangian
triangulation of the membrane. The Lagrangian discretization provides a
convenient framework to access the strains of the elastic membrane, and to
compute its elastic and bending stresses. Unlike the Lagrangian approach,
the Eulerian method carries all computations on the structured Eulerian
grid, including the elastic strains. In this section we describe the Eulerian
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framework and introduce the corresponding equations.
In the absence of nodes, edges and triangles, the membrane shape is

described using an indicator function c, called “Volume of Fluid function”
− often abbreviated “VOF function” − or simply “color function”. This
function was introduced by Brackbill et al. [25] and is defined to be 0 in the
fluid grid cells located outside the membrane and 1 in the fluid grid cells
located inside the membrane. Brackbill et al. initially defined c = 1/2 in
the cells cut by the interface − the elastic membrane in our case − but this
method was later improved by defining c as the volume fraction of the inner
fluid. 

c = 0 outside the capsule

c = 1 inside the capsule

0 < c < 1 in interfacial cells.

(6.1)

The scalar field c thus tags the location of the capsule in an Eulerian fashion,
and the location of the membrane can be inferred from the fluid grid cells
where 0 < c < 1. The VOF function is useful to define fluid properties that
jump accross the membrane, such as the viscosity field using an arithmetic
average as follows:

µ = cµi + (1− c)µe (6.2)

where µi and µe are the constant viscosities in the interior and the exterior
of the capsule, respectively. In time-dependent problems, the VOF function
is advected as a passive tracer:

∂c

∂t
+ u · ∇c = 0, (6.3)

however the numerical scheme to solve Eq. (6.3) should be chosen with
care in order to minimize diffusion. For this reason, geometric schemes
are popular to advect the VOF function since they essentially eliminate
numerical diffusion [179].

In the Eulerian framework describing elastic membranes, it is useful to in-
troduce a neighborhood around the membrane in order to define membrane-
specific quantities on the Eulerian grid. An indicator function Γ̃ can be
introduced from the VOF function in order to formally define this neighbor-
hood:

Γ̃ =

{
1 if |∇c̃| > 0

0 otherwise,
(6.4)

where c̃ can be the VOF function c itself or a mollified version of it, depend-
ing on the desired thickness of the membrane neighborhood. An example of
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Figure 6.1: Schematic of the Eulerian description of a capsule: the red line denotes the
location of the membrane, located in cells where 0 < c < 1; while the shaded area denotes
the location of the membrane neighborhood corresponding to Γ̃ = 1.

the Eulerian description of the membrane and its neighborhood is sketched
in figure 6.1. In the following, we refer to Γ̃ as “membrane neighborhood”
or “membrane region” indistinctively.

6.2.2 Membrane mechanics

Within the context of the Eulerian framework, we present in this section the
expression of the body force term fb appearing in Eq. (4.1) and representing
the action exerted by the membrane onto its surrounding fluid. The follow-
ing equations are introduced by Ii et al. [92–94] based on the original work of
Barthès-Biesel & Rallison [21]. We remind the reader that the equations in
Section 6.2.2 pertaining to the membrane mechanics are only valid in three
dimensions, i.e. for two-dimensional membranes. However, for code devel-
opment and validation purposes, it is useful to implement a two-dimensional
model in the first place, where the membrane is one-dimensional. As such,
we present in Section 6.2.2 a formulation of the membrane mechanics valid
for one-dimensional membranes embedded in a two-dimensional space. To
our knowledge, there is no such formulation in the literature, despite its im-
portance for the development and validation stages of the numerical solver.
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Standard formulation

Similar to the Lagrangian description introduced in Chapter 4, the mem-
brane strains are described using the surface deformation gradient tensor

Fs = P · F · PR, (6.5)

where P and PR are projectors onto the current and reference configurations
of the membrane, respectively. The tensor F stores the deformation of the
current configuration x with respect to the reference configuration X of a
three-dimensional elastic solid:

F = ∂x/∂X. (6.6)

Because we only consider membrane elasticity as opposed to the elasticity
of a three-dimensional solid, in the following we omit the subscript s and we
denote the surface deformation gradient by F . This tensor has no meaning
far away from the membrane and is therefore defined only in the membrane
region Γ̃.

In the Eulerian description, the membrane strains are computed by ad-
vecting the left surface Cauchy-Green deformation tensor B

B = F · F T , (6.7)

using the advection equation

∂B

∂t
+ (u · ∇)B = B · ∇su+ (∇su)

T ·B, (6.8)

where ∇s = P ·∇ on the right-hand side is the surface gradient operator. If
the membrane is in a known state at t = 0 − e.g. at t = 0 the membrane is
in its strain-free configuration B = I − Eq. (6.8) fully describes the strains
of the membrane for all t ≥ 0.

In order to express the membrane load fb we first need to define the
elastic stress tensor σe as a function of the strain. To this end, we follow
Barthès-Biesel & Rallison [21]: knowing that the stress tensor has a zero
eigenvalue in the direction n normal to the membrane, then the other two
non-zero eigenvalues − the principal stresses σ1,2 − in the directions e1, e2
are expressed as

σi =
1

λ1λ2
λi
∂W

∂λi
i ∈ {1, 2} (no summation). (6.9)
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From the principal stresses, we can express the stress tensor σ using the ro-
tation matrix R from the canonical basis to the shared eigenbasis (e1, e2,n)
of σ, B and F :

σe = e−aR ·
(
∂W

∂a
(e1e1 + e2e2) +

∂W

∂b
(λ21e1e1 + λ22e2e2)

)
·RT

⇔ σe = e−a

(
∂W

∂a
P +

∂W

∂b
B

)
, (6.10)

where the two invariants a, b have been introduced:{
a = log(λ1λ2) =

1
2 log

(
1
2Tr(B)2 − 1

2(Tr(B
2))
)

b = 1
2(λ

2
1 + λ22) =

1
2Tr(B)− 1.

(6.11)

For simplicity, in this chapter we only consider the neo-Hookean law,
which strain energy function is defined in Eq. (4.6). The elastic stress tensor
σe can then be expressed solely in terms of the left surface Cauchy-Green
deformation tensor B and its invariants, as well as the surface projector P :

σe =
Es

3
e−a

(
B − e−2aP

)
(6.12)

If a bending stress is considered, we follow the bending model of Pozrikidis
[157]. In this model, the bending stress σb is expressed as a function of the
transverse shear tension q and the normal vector n

σb = qn, (6.13)

with q a function of the bending moments m

q = (∇s ·m)P . (6.14)

Pozrikidis chooses a linear bending model and expresses the bending mo-
ments m as follows:

m = Eb (κ− κRP ) , (6.15)

where
κ = −∇sn = −∇n (6.16)

is the so-called “Cartesian curvature tensor”, and

κR = −Tr(∇n)/2 (6.17)

is the reference curvature. This linear bending model is equivalent to the
Helfrich bending model in the limit of small deformations [71].

Finally, the body force fb is expressed as the surface divergence of the
stress tensor localized around the membrane:

fb = |∇c̃| ∇s · (σe + σb) . (6.18)
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Expressing the surface Jacobian

Following Ii et al. [93, 94], the numerical stability of the solver can be
improved by removing the dependency of B on the surface Jacobian J of
the membrane. The surface Jacobian represents the local ratio of current
area over the reference area, and is expressed as:

J = λ1λ2 =

√
1

2
(Tr(B)2 − Tr(B2)). (6.19)

While J could be computed from B at every time step, we follow Ii et al.
[94] and advect J on its own, following:

∂J

∂t
+ u · ∇J = (∇s · u)J. (6.20)

Consequently, the modified left Cauchy-Green deformation tensor G is in-
troduced, as well as its advection equation:

G = B/J (6.21)

∂G

∂t
+ (u · ∇)G = G · ∇su+ (∇su)

T ·G− (∇s · u)G. (6.22)

Noting that ea = J , the expression of the elastic stress tensor σe derived in
Eq. (6.12) for the neo-Hookean elastic law becomes

σe =
Es

3

(
G− 1

J3
P

)
. (6.23)

Simplification in the case of one-dimensional membranes

The case of two-dimensional simulations leads to a simplification of the
above expression of the elastic stress tensor. Indeed, if the membrane is
one-dimensional, there exists only one principal stretch λ1. Moreover, by
definition, we have

J ≡ λ1 (6.24)

and

B =

[
λ21

0

]
= J2P . (6.25)

Therefore, the elastic stress tensor σe can be expressed in terms of the
surface Jacobian J and the projector P only; and neither B nor G need to
be considered.
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Ensuring in-plane strains and stresses

In order to enforce zero normal elastic strains and stresses, additional con-
straints are placed on G and σe. At all time in the simulation, the following
constraints need to be verified, and are manually enforced at every time
step:

n ·G = G · n = 0 ⇐⇒ G = P ·G · P , (6.26)

n · σe = σe · n = 0 ⇐⇒ σe = P · σe · P . (6.27)

6.2.3 Full system of equations

In summary, we solve the incompressible, Newtonian Navier-Stokes equa-
tions coupled with the Eulerian membrane mechanics framework presented
above. The thirteen equations and definitions describing this problem are
provided below:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

(
µ
(
∇u+ (∇u)T

))
+ fb (6.28)

∇ · u = 0 (6.29)

∂c

∂t
+ u · ∇c = 0 (6.30)

µ = cµi + (1− c)µe (6.31)

fb = |∇c̃| ∇s · (σe + qn) (6.32)

σe =
Es

3

(
G− 1

J3
P

)
(6.33)

P = I − nn (6.34)

n = ∇c (6.35)

q = Eb (∇s · (κ− κRP ))P (6.36)
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κ = −∇n (6.37)

∂J

∂t
+ u · ∇J = (∇s · u)J (6.38)

∂G

∂t
+ (u · ∇)G = G · ∇su+ (∇su)

T ·G− (∇s · u)G. (6.39)

∂κR
∂t

+ u · ∇κR = 0 (6.40)

n ·G = G · n = 0 (6.41)

6.3 Numerical method and implementation
strategy

6.3.1 Definition of the membrane region Γ̃

Our first step is to define a neighborhood of the membrane. Since the
membrane is located in grid cells where the VOF function has a fractional
value, 0 < c < 1, a neighborhood of width ∆x could be simply be defined
using the indicator function

Γ =

{
1 if 0 < c < 1

0 otherwise.
(6.42)

In practice, finite differences and finite volume operations will be performed
in this neighborhood, and Γ needs to be over three grid cells-wide. Therefore,
we define the mollified function c̃ by averaging c from its neighbors. In
practice, we repeat this averaging twice, and the resulting membrane region
Γ̃ defined in Eq. (6.4) is 5 to 7 grid cell-wide, which is enough to allow
several differentiations of the membrane quantities. This operation is done
at every time step, right after the advection of the VOF function.

6.3.2 Invariance along the normal direction

In the membrane region Γ̃, surface quantities such as J , G and σe are
extended to the three-dimensional space. This is necessary to be able to
differentiate these quantities on a structured Cartesian grid, and it is the
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core of the Eulerian method. Of course, none of these surface quantities
physically exist away from the membrane: their values in Γ̃ are extrapola-
tions from the membrane surface. As such, for any surface quantity q, we
require: {

∂q
∂n = 0 in Γ̃

q = 0 everywhere else,
(6.43)

where n is the vector normal to the membrane.
In order to enforce Eq. (6.43), an elegant idea introduced by Chen et

al. [30] and Peng et al. [146] − both improving the level-set method for
surface tension-driven flows − is to use a PDE approach. In this approach
a quantity q known at the interface is extended outward using the following
advection equation:

∂q

∂τ
+ S(x)n · ∇q = 0, S(x) =


1 if c = 1

0 if c ∈ (0, 1)

−1 if c = 0

, (6.44)

where τ is a pseudo time and the normal vector S(x)n acts as a propagation
velocity of magnitude 1, since |n| = 1, with S(x) ensuring q is propagated
away from the membrane. Moreover, if the resolution of Eq. (6.44) is per-
formed using an upwind scheme, there is no need to specify boundary con-
ditions nor an initial guess for q away from the interface, as the information
is strictly propagated away from the interface along the normal direction.
Our Eulerian method relies on Eq. (6.44) to extend J , κR as well as all
the components of G, σe, κ and even the normal vector itself n, which is
known to greater accuracy on the interface. In the latter case, an initial
guess is necessary away from the interface, and we choose the normalized
gradient of the smoothed volume fraction field n0 = ∇c̃/|∇c̃|. The upwind
solver iterates as long as the extended quantity q is converged to a desired
criterion, or until reaching a maximum number of iterations.

6.3.3 Advection equations

We now focus on the numerical advection of the VOF function c, the surface
Jacobian J , the surface left Cauchy-Green deformation tensor G and the
reference curvature κR. First, the VOF function needs special treatment as
a desirable property of the numerical advection of c is to conserve volume to
machine precision. To this end, a geometric advection scheme is used, and
was already implemented and validated in Basilisk at the beginning of this
study [153].
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Regarding the advection of J , G and κR, limiting numerical diffusion
during the advection step is not as critical as in the case of the VOF function
thanks to the extension algorithm introduced in Section 6.3.2. Indeed, a
consequence of the extension of J , G and κR is to overwrite the cells in the
outer membrane region to the value of the nearby interfacial cells, effectively
suppressing numerical diffusion in the outer membrane region. It is a similar
approach to that employed by Jain et al. for their improved RMT [97].
To numerically solve Eq. (6.38−6.40), we choose the upwind advection
scheme introduced by Bell et al. [23] and already implemented in Basilisk
to compute the advective term of the Navier-Stokes equation. This scheme
solves

∂f

∂t
+∇ · (fu) = S(f,x,u, J,G), (6.45)

where f is a scalar field and S is a source term possibly depending on f ,
x, u and even J and G. The form of Eq. (6.45) is equivalent to that
of Eq. (6.38−6.40) thanks to the incompressibility condition of the fluid.
In practice, Eq. (6.45) is applied simultaneously to J , κR and all of the
components of G, while all the source terms are pre-computed before the
simultaneous advections begin.

6.3.4 Face-centered acceleration term

Once the surface quantities are advected, the last step of the Eulerian capsule
solver is to compute the surface divergence of the total membrane stress
σ = σe + qn according to Eq. (6.32). For well-balancing reasons [151],
in Basilisk the acceleration vector is stored on the cell faces as opposed to
the cell centers. Consequently, we extend to three-dimensions the scheme of
Lopez-Herrera [125], and we adapt it to surface differentiation operators.

We aim to compute ∇s · σ on the cell faces from a centered tensor σ.
Let’s consider the x-component of ∇s ·σ: it is composed of space-derivatives
of various components of σ along the three directions:

(∇s · σ)x =
[
(1− n2x)∂xσxx − nxny∂yσxx − nxnz∂zσxx

]
+
[
(1− n2y)∂yσxy − nynx∂xσxy − nynz∂zσxy

]
+
[
(1− n2z)∂zσxz − nznx∂xσxz − nzny∂yσxz

]
,

(6.46)

with n = [nx ny nz] the vector normal to the membrane, and where the
shortcut notation ∂/∂i = ∂i, i ∈ {x, y, z} is introduced. In Eq. (6.46),
all of the derivatives along the direction normal to the face of interest − the
x-direction in this example − are computed to second order accuracy with
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(a)

(b)

Figure 6.2: Numerical scheme to obtain a face-centered differentiation of a cell-centered
tensorial quantity. (a) Differentiation along the normal of the considered face (simple
finite differencing). (b) Differentiation along a tangential direction to the considered face
(involves vertex-averaging before differentiating).
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a simple finite difference scheme, as illustrated in figure 6.2a. However, in
order to obtain a face-centered differentiation of τ in the directions tangen-
tial to the face of interest, a vertex-averaging procedure is first employed,
as shown in figure 6.2b. This is equivalent to taking a finite difference of
the face-averaged quantity from the two faces above and below the face of
interest.

6.4 Validation cases

In this section, we compare the results produced by the above implemen-
tation of the fully Eulerian capsule solver against analytical solutions and
findings reported in the literature. We discuss the ability of the present
implementation to reproduce expected results and we make modifications
to parts of the solver when applicable.

6.4.1 Accuracy of normal vectors

We begin our validations by ensuring that our PDE-based extension pro-
cedure of membrane quantities of the interfacial cells leads to satisfactory
performance. For simplicity the results in this section are generated in two
dimensions, but the extension to three dimensions is straightforward and
shows identical performance.

We consider a circular membrane, where the normals everywhere in the
membrane region Γ̃ are initialized as the gradient of the mollified VOF
function, except in interfacial cells where the normals are computed with
the height functions method [153]. The PDE presented in Section 6.3.2
is solved for each component of the normal vector, and the L2 and L∞
errors between the analytical and extended normal vectors na and ne are
computed for increasing grid resolutions, from 8 points per diameter to 128
points per diameter. We also display the errors of the normal vectors nVOF

computed from the mollified VOF function, and we plot the results in figure
6.3. First, we notice that the L∞-error of nVOF does not converge, both in
the case of interfacial cells and in the case of cells located away from the
interface. This strong limitation of differentiating the VOF function was
acknowledged early on in the literature [165] and led to a variety of methods
aiming to compute the interface normals [136, 153, 165, 171]. The L2-error
on nVOF, however, converges at a first order rate. On the other hand,
the L∞-error on ne anywhere in the membrane region does converge with
first order accuracy, and its L2-error converges with second order accuracy.
Considering the absolute value of the error instead of its convergence rate,
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at a typical resoluion of 32 points per diameter the L2- and L∞-errors are
of the same order of magnitude in the interfacial cells, and they are about
5 times lower for ne in the rest of the membrane region.

The results in figure 6.3 are satisfactory: they validate our implemen-
tation of the PDE-based extension method presented in Section 6.3.2, and
they show that the L2- and L∞-errors on the extended normal vectors do
converge in space at second and first orders of accuracy, respectively.

6.4.2 Stretching of a flat membrane

Our next validation case pertains to the stretching of a flat membrane.
Because the membrane is represented in an Eulerian fashion, the desired
membrane stretch has to be imposed by the surrounding flow field. The fol-
lowing two cases aim at validating the advection equations of the quantities
J and G describing the membrane stretch, as well as the computation of
the stress tensor and of the body force applied to the fluid.

Constant strain

First, we impose an elongational flow field such that the stretch is 1 every-
where in the membrane. If the membrane is located at y = 0 as shown in
figure 6.4, a corresponding flow field that produces the desired membrane
stretch and guarantees the incompressibility condition ∂u/∂x + ∂v/∂y = 0
is u = [u, v, w] = [x,−xy, 0]. In that case, Eq. (6.38) reduces to

∂J

∂t
+ x

∂J

∂x
= J. (6.47)

Because the strain is constant, ∂J/∂x = 0 and the unique solution such that
J(t = 0) = 1 is J(t) = et. We would find the same solution if we applied the
method of characteristics to the full equation Eq. (6.47) without noticing
this simplification. Eq. (6.39) is subject to similar simplifications, and we
find:

G =

et 0
e−t

 . (6.48)

Note that G is diagonal in virtue of Eq. (6.41), otherwise extra non-zero
diagonal components would appear. Similarly, the stress tensor is computed
from Eq. (6.23):

σe =

et − e−3t

0
e−t − e−3t

 . (6.49)

154



6.4. Validation cases

10-5

10-4

10-3

10-2

10-1

100

10 100

Er
ro
r	o

f	t
he

	in
te
rfa

ce
	n
or
m
al
s

Points	per	diameter

L2-norm,	height	functions
Linf-norm,	height	functions

L2-norm,	smoothed	VOF
Linf-norm,	smoothed	VOF

Convergence	of	interface	normals	in	membrane	cells	for	a	circular	capsule

10-6

10-5

10-4

10-3

10-2

10-1

100

10 100

Er
ro
r	o
f	t
he
	in
te
rfa
ce
	n
or
m
al
s

Points	per	diameter

L2-norm,	height	functions
Linf-norm,	height	functions
L2-norm,	smoothed	VOF
Linf-norm,	smoothed	VOF

Convergence	of	interface	normals	in	interfacial	cells	for	a	circular	capsule

Figure 6.3: L2-error and L∞-error on the normal vectors for a circular membrane, in
the whole membrane region Γ̃ (top) and restricted to the interfacial cells (bottom). Two
methods to compute the normal vectors in the interfacial cells are compared: (i) from
the normalized gradient of the mollified VOF function, and (ii) from the height functions
method presented in [153].
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Figure 6.4: Elongational flow field leading to a constant membrane stretch.

Because σe is independent of space, the body force applied to the fluid is
zero in this simple flow configuration. Nevertheless, this case allows us to
validate the temporal terms of the advection equations for J and G, and we
plot in figure 6.5 the comparison between the results of the present solver
and the above analytical solutions.

We can see from figure 6.5 that our solver compute strains and stresses
that perfectly overlap the curves corresponding to the analytical solutions.
Considering the simplifications this test case introduced, we can conclude
that the time-dependent terms of the advection equations of J and G and
the computation of the diagonal components of G and σe are correct.

Linear strain

We then consider an elongational flow resulting in a space-varying membrane
stretch, in order to validate the space derivatives of the advection equations
of J and G. A flow leading to a linearly increasing stretch in the x-direction
and fulfilling the incompressibility condition is u = [x2/2, −xy, 0] as rep-
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Figure 6.5: Strains and stresses in a flat horizontal membrane located at y = 0 and
subject to a constant stretch.
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Figure 6.6: Elongational flow field leading to membrane stretch varying linearly in the
x-direction.
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resented in figure 6.6. In this case, Eq. (6.38) reduces to

∂J

∂t
+
x2

2

∂J

∂x
= xJ, (6.50)

and the method of characteristics yields

J(x, t) =

(
1 +

xt

2

)2

. (6.51)

Similarly, applying the method of characteristics to Eq. (6.39) and ensuring
that the in-plane constraint Eq. (6.41) is verified, we get

G =


(
1 + xt

2

)2
0

1

(1+xt
2 )

2

 =

J(x, t) 0
1

J(x,t)

 , (6.52)

and the stress tensor σe takes the form

σe =

J(x, t)−
1

J(x,t)3

0
e−xt − 1

J(x,t)3

 . (6.53)

With the elastic stress tensor σe now varying in space, the elastic body force
fb, or elastic acceleration a transferred to the fluid, is non-zero:

a/|∇c̃| = ∇s · σe =

1
3

(
t
√
J(x, t) + 3tJ(x, t)

9
2

)
0
0

 (6.54)

The quantitative comparison of J , G, σe and a produced by our solver
to their analytical expressions is shown in figure 6.7. All of them match
very well the analytical solutions, thus validating the advection equations
for J and G, as well as the computation of σe and a; at least when the
membrane is aligned with one of the axes and the off-diagonal components
of the tensors are all zero. In order to further test our solver, we can rotate
the frame of reference of this case, resulting in a tilted membrane as well as
non-zero off-diagnoal components in G, σe and a. As long as the imposed
elongational flow is rotated accordingly, all of the above quantities are still
expressed according to Eq. (6.51−6.54) in the frame of reference aligned
with the membrane.
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Figure 6.7: (a) Surface Jacobien J around a horizontal flat membrane (not shown)
subject increasing linearly along the x-direction. (b) Corresponding strains, stresses and
elastic acceleration and comparison with their analytical solutions, sampled at x = 0.25
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Figure 6.8: (a) Surface Jacobian J around a rotated flat membrane subject to a strech
increasing linearly along the membrane. The membrane is represented in grey. (b) Cor-
responding strains, stresses and elastic acceleration and comparison with their analytical
solutions, sampled at x = 0.25.
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We perform this case and show the results in figure 6.8. The agreement
between the surface Jacobian J , the left Cauchy-Green deformation tensor
G and the elastic stress σe and their analytical solutions is satisfactory.
Thus, our implementation of the advection equations for J and G as well
as the computation of σe is validated. However, the computed acceleration
a deviates from its analytical solution, and the error accumulates in time
leading to a 5% decrease in the predicted value. This discrepancy is rather
significant for such a simple, one-way coupling test case. We will come back
to this observation in Section 6.5.

6.4.3 Capsule deformation in a simple shear flow

After validating separately the various components of the Eulerian solver,
we bring them together in one test case. In this subsection, we simulate
the classical capsule in a shear flow problem presented in Section 4.4.2: an
initially spherical capsule subject to neo-Hookean elastic membrane forces
is placed in a shear flow and its Taylor deformation parameter is measured
with respect to time. The Capillary number is 0.2 and we choose a Reynolds
number of 0.01 in order to compare our method to Stokes flow solvers. A
snapshot of the deformed capsule is shown in figure 6.9.

The results for the transient regime are shown in figure 6.10a for two
different non-dimensional time steps ∆t1 = 10−3 and ∆t2 = 10−4; and in
figure 6.10b for two different grid resolutions D/∆x1 = 64 and D/∆x2 =
128, with D the initial diameter of the capsule. We note that the results
are fully converged in time, and close to be converged in space. In all
cases, the Taylor deformation parameter is away from the reference values
of Pozrikidis [156] and Eggleton & Popel [49] by about 15% near the end of
the transient regime. Such deviations in a simple case like this shear flow
are not acceptable, and a considerable amount of time and resources was
invested in attempting to improve the behavior of our fully Eulerian method.
The influence of the domain size, the method for computing normal vectors,
the size of the kernel |∇c̃| during the force-spreading step, the size of the
membrane region Γ̃, the extension of membrane quantities away from the
interface, the computation of J as an invariant of B or via the advection
equation Eq. (6.38), the adaptive mesh, even a slight modification in the
advection equation of G4: all of these factors were tested independently

4A typographical error was suspected in [92–94], with the transpose operator being
switched from (∇su)

T ·G to G · (∇su)
T in Eq. (6.39). Instead of a misprint, this could

be an unconventional choice for ∇u, with (∇u)ij ≡ ∂uj/∂xi in [92–94] instead of the
more conventional (∇u)ij ≡ ∂ui/∂xj .
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Figure 6.9: A neo-Hookean capsule represented by the fully Eulerian method in a shear
flow. The color field represents the magnitude of the x-component of the velocity.
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Figure 6.10: Convergence analysis of the fully Eulerien method in space (a) and time
(b) for the case of an initially spherical neo-Hookean capsule in a shear flow in three
dimensions. The Capillary number is 0.2.
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for the aforementionned shear flow configuration, and all of them led to
similar (sometimes worse) deviations from the literature. It does not add
value to this chapter to display all the plots corresponding to these changes,
since they all show a deviation of more than 15% from the reference data.
We discuss in the next section the possible causes of such large deviations
from the reference values, as well as changes to make in our fully Eulerian
implementation in order to improve its accuracy.

6.5 Discussion

Given the rigorous validation process presented in the previous subsections,
we rule out the hypothesis of a careless bug in our code leading to the dis-
crepancies observed in Section 6.4.3. Indeed, we showed in Sections 6.4.1
to 6.4.2 that the advection equations of J and G, the computation of σe

and that of ∇s · σe, as well as the extension of the scalars and normal vec-
tors are all computed correctly. However, the small discrepancy between
the analytical and computed accelerations in the case of a tilted membrane
as seen in figure 6.8 is puzzling, especially because such deviations are not
observed in figure 6.7 when the membrane is orthogonal to one of the axes.
In other words, when the vectors normal to the interface are arbitrary, an
error accumulates over time in the computation of the acceleration vector,
or more precisely in the term ∇s · σe. We hypothesize that in the fully Eu-
lerian method, computing extremely accurate normal vectors is critical, due
to the projection operator P = I − nn involving quadratic components of
the normal vectors and employed every time a surface gradient operator and
a surface divergence operator are applied. In other words, our implementa-
tion of the fully-Eulerian method could suffer from not sufficiently accurate
normal vectors, which error is amplified quadratically every time P and ∇s

appear in the equations. Indeed, in figure 6.3 we show for that a resolution
of 32 to 64 points per diameter, our normal vectors in non-interfacial cells
are only slightly more accurate than the normal vectors computed from the
mollified VOF function [165]. This initial error on our normal vectors could
be amplified at each use of the surface projector and the surface differenti-
ation operator, eventually becoming visible in the body force term in figure
6.8. This accumulated error could undermine the whole method in a two-
way coupling simulation, as we experienced in Section 6.4.3. By design or by
chance, Ii et al. [92, 94] use a method to compute the normal vectors which
provides them by default in the whole membrane region Γ̃ as opposed to
only in interfacial cells. Therefore, they do not need to extend their normal

165



6.5. Discussion

vectors using the method we presented in Section 6.3.2, and the accuracy of
their normal vectors is independent of the distance from the interface.

To improve our implementation of the fully Eulerian method, we could
employ the method of Ii et al. to access more accurate normal vectors in Γ̃:
in this method, the VOF function is smoothed in such way that its profile
along the normal direction is a hyperbolic tangent. This so-called MTHINC
method − for Multi-dimensional Tangent of Hyperbola Interface Normal
Computation − was successful in simulating surface tension-driven flows
using the VOF framework, and was designed by Ii et al. in a dedicated study
[95]. Alternatively, if the interface is represented by a level-set function ϕ,
accurate normal vectors can be accessed anywhere in the membrane region
by a simple differentiation of ϕ. If more accurate normal vectors are sought,
one could simply employ a higher-order scheme to compute the gradient of
ϕ. In fact, Ii et al. presented in 2018 a cell-wall interaction model relying on
a modified version of their fully Eulerian method in which normal vectors
are computed using a level-set function [93], confirming that the level-set
framework can be a viable option as well in the context of elastic capsules. As
we previously mentioned, using the level-set framework comes at the expense
of losing the conservation property of the method. Ii et al. circumvent this
issue by employing the coupled level-set/VOF (CLSVOF) formulation of
Sussman & Puckett [190]: this method could be implemented in Basilisk
and it would likely improve the results we presented in Section 6.4.3. Before
implementing the complicated CLSVOF method, it could be interesting to
rely solely on the level-set framework and assess its performance. Indeed,
we do not expect the property of exact mass conservation to be critical for
the flow configurations we are interested in, i.e. Reynolds numbers ranging
from 0 to at most 100.

Besides the inaccuracy of the vectors normal to the capsule likely com-
promising our current implementation, other reserves with respect to the
fully Eulerian method deserve to be formulated in this section. First, we
presented in figure 6.10b the spatial convergence of our implementation. In
the simple shear flow configuration we considered, our simulation was still
not fully converged with 64 grid cells per diameter. 64 and 128 grid cells
per diameters are both extremely fine grid resolutions. If such fine reso-
lutions were required to obtain converged simulations, the fully Eulerian
solver would be too computationally expensive to be applied to realistic
cases featuring big domains and many capsules. Evidently, part of this slow
convergence can be attributed to our inaccurate normal vectors, but the
fully Eulerian method could also simply require finer grid resolutions close
to the membrane than its Lagrangian counterpart. Moreover, the extension
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of surface quantities from the interfacial cells to the rest of the membrane
region using our PDE-based method presented in Section 6.3.2 can be very
expensive: our tests showed that a fully converged extension procedure re-
quires about O(100) iterations. If we were to implement a level-set based
method to compute the normal vectors, re-initializing the level-set to a dis-
tance function − a step known as “redistanciation” − is also an expensive
PDE-based method which cost would add to that of our extrapolation of
surface quantities. Finally, if bending forces are considered, the curvature
needs to be differentiated twice. For the past 25 years, many very elab-
orate methods have been proposed in the literature to compute the mean
curvature κ of a fluid-fluid interface, such as the height-functions method
or the MTHINC method. We can expect that relying solely on an Eule-
rian grid to compute ∆sκ even to first order accuracy would be extremely
challenging. The lead author of the fully Eulerian method we attempted to
reproduce, Satoshi Ii [92], was contacted and kindly replied transparently
to our concern about the order of accuracy of the implementation of ∆sκ:
they confirmed that their fully Eulerian method leads in theory to a neg-
ative order of accuracy for ∆sκ, and consequently the bending force as a
whole should suffer the same lack of convergence. Therefore, describing an
immersed biological membrane subject to elastic and bending stresses by
the VOF function alone is not a good strategy. Other Eulerian methods
more robust to a direct differentiation of the interface geometry should be
preferred, such as the level-set and the phase-field methods.

For these reasons, and after eighteen months of attempting to implement
the fully Eulerian method in Basilisk, we decided that describing the capsule
in a Lagrangian fashion was a better choice, as this method seems to be
more robust and as it had already been implemented successfully by several
groups in the context of a constant Eulerian grid. This work eventually led
to Chapter 4 and Chapter 5.
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Chapter 7

Conclusion

In this thesis, we investigated two types of interaction relevant to the simu-
lations of cell-resolved biological flows. The biological fluids we consider are
composed of: (i) highly deformable flowing cells, such as Red Blood Cells
(RBCs), and modelled as elastic membranes surrounding an inner fluid5; (ii)
rigid particles of spherical and non-spherical shapes, such as White Blood
Cells and platelets; and (iii) a surrounding Newtonian fluid, such as blood
plasma. In Part I, the numerical simulations and physical behavior of a
collection of dispersed solid particles of arbitrary shape were considered. In
Part II, numerical methods relevant to immersed elastic capsules were de-
veloped, and a detailed study of the physical behavior of capsules flowing
through a microfluidic geometry was carried out. In Sections 7.1 and 7.2,
we summarize and discuss our findings from Parts I and II, and we provide
recommendations for future works in these specific areas. In Section 7.3, we
present general perspectives and we relate our work to promising advances
in biology as well as in other fields.

7.1 Granular dynamics

In Chapter 2, we implemented a contact model relevant to the simulation
of granular media using the Discrete Element Method. This contact model
with “memory” allows to accurately represent dynamic and static granu-
lar assemblies, thanks to a spring-dashpot model in the directions normal
and tangential to the contact, as well as in the rotational space. Our im-
plementation was validated quantitatively in a series of test cases and the
qualitative agreement between our implementation and the literature is very
satisfactory. We found, however, that the contact models in DEM require
a number of parameters which physical interpretation is not clear: as such,
we surveyed the literature and we proposed a procedure to determine the
contact parameters in a reproducible and rigorous fashion in the case of
spherical particles. The software this model was implemented in will soon

5Such objects are referred to as “capsules” in the literature and in this dissertation.
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be released on an open-source license, thus allowing everyone to perfom ac-
curate DEM simulations of particles of arbitrary shape, as well as rendering
our research more reproducible.

In Chapter 3, we used our newly implemented contact model to inves-
tigate the dynamics of granular avalanches in a dam break configuration.
We started by acknowledging that the literature mainly considers spherical
particles while most of the granular materials are composed of particles of
arbitrary shape − often non-convex. As a result, the current knowledge in
the literature fails to accurately predict the dynamics of realistic granular
materials, especially when a close inspection of the granular structure re-
veals the presence of intricated particles. Therefore, we chose to consider
non-convex, cross-shaped particles that are prone to entanglement, and we
compared our simulations to experiments. Excellent qualitative and quanti-
tative agreement was shown between our simulations and our experiments,
thus further validating our DEM solver. Moreover, several novel behaviors
were observed both experimentally and numerically, such as the top-driven
collapse and the buckling collapse. We denoted by “intermittent” a regime
characterized by the non-reproducibility of the macroscopic outcome of a
given configuration. In the intermittent regime, after opening the gate, a
granular column was found to either collapse or remain stable in a non-
reproducible way. Surprisingly, macroscopic quantities of our avalanches of
cross-shaped particles such as the runout distance and the height ratio were
found to be very similar to that of avalanches of spherical particles, despite
observing very different dynamic processes during the transient regime. Our
simulations allowed us to access the microstructure of the granular assembly,
and we analyzed the contact network, in terms of the probability density
function of the contact forces as well as the fabric anisotropy. Our hope
was to distinguish a priori the intermittent-stable from the intermittent-
collapsed regimes, given a specific microstructure prior to the opening of
the gate. We found that neither these macroscopic quantities nor quan-
tities averaged over the whole granular system could be used to discrimi-
nate the two regimes, suggesting that the intermittent behavior arises from
mesoscale structures such as densely connected clusters of particles. Such
a complex three-dimensional and anisotropic microstructure is difficult to
analyze from a human perspective: in much simpler cases, such as two- and
three-dimensional simulations of disks and spheres, insight was gained from
processing the microstructure through a neural network, as these algorith-
mic frameworks are designed to find regularity in complex datasets. Future
research could investigate the intermittent regime of entangled granular me-
dia using Machine Learning tools.
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During our investigation of granular avalanches of cross-shaped particles,
we found that our simulations were not agreeing with our experiments when
the contact model parameters were determined using our rigorous procedure
introduced in Chapter 2. Indeed, the aforementionned procedure used to set
contact model parameters was derived for spherical particles. Even though
similar procedures were applied successfully in the case of spheroids [181],
our experience shows that it is not correct when the shape of the particles
of interest deviates significantly from that of a sphere. As such, we had to
perform a calibration analysis using the data from our experiments prior
to conducting the simulations relevant to our original study. Unfortunately,
numerical investigations that compare their results to experimental data are
rare in the DEM community, in particular when dealing with high aspect ra-
tio, non-spherical particles. Our work demonstrates that quantitative DEM
studies of non-spherical particles should always be substantiated by experi-
ments, a claim supported by other authors in the community [119, 172]. At
the very least, we recommend that all DEM publications clearly indicate the
numerical values of the full set of contact parameters in order to promote
reproducibility − a practice that is still rare in this field. Another limitation
of the DEM is the drastically small time step needed to resolve the time scale
of contact. In our study, the time step was about a millionth of the physical
time scale of interest. The non-trivial contact detection step of high aspect
ratio, non-convex bodies further implies that the computing time for each
time step is significant − in the hundreds of milliseconds in the case of our
assemblies of O(103) particles. As a result, the computing time is extremely
long for each simulation − in the order of one to two weeks per simulation
depending on the configuration. One way to mitigate this issue is to adopt a
shared memory parallel approach instead of our current distributed memory
parallel implementation. In other words, instead of using an MPI-based par-
allelism, relying on OpenMP or on Graphics Processing Units (GPUs) could
lead to dramatic performance improvements. More specifically, translating
our DEM solver to allow it to run on GPUs could realistically reduce the
computing time by one or two orders of magnitude. Indeed, the usage of
the “linked-cell” algorithm to optimize the contact detection step6 has the
side effect of limiting the number of distributed processes in the simulation,
but not the number of processes sharing memory, such as GPU threads. As
a result, on a hardware architecture such as a GPU where the memory is

6This algorithm reduces the number of collision tests from O(N2) to O(N), with N
the number of particles. Its underlying idea is to partition the space in sub-regions: a
given particle can only collide with other particles located in the same sub-region or in
neighboring sub-regions [168].
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shared between all processes, one could assign only one or a few particles
per process while maintaining excellent scaling, thus drastically reducing the
amount of computations per thread, − and consequently the overall comput-
ing time. While the amount of memory on older generations of GPUs could
have raised concerns over the viability of a scalable DEM implementation on
GPUs, this is not a concern anymore thanks to rapidly advancing hardware
technologies. Indeed, a cutting-edge GPU in 2022 can provide around 40GB
of memory, and new high-bandwith technologies such as NVLink allows to
increase the memory capacity to over 110GB, thus allowing virtually any
DEM simulation to be ported to GPU architectures [163]. This promising
parallelism improvement is under current investigation by a member of our
group.

Another direction for future research would be in the realm of rheology.
In Chapter 3, we have exhibited very complex granular behaviors and our
simulations allow to access virtually any quantity of interest: from informa-
tions at the scale of a particle to averages at the meso and macro scales.
As such, we could build a macroscopic description of our entangled gran-
ular medium from the bottom-up: by averaging the granular stress at the
mesoscale over a control volume, we would compute a stress tensor that could
be used in a continuum simulation − similar to the µ(I)-rheology stress de-
scription − and effectively representing our entangled granular medium as
a non-Newtonian fluid. This approach has already been employed to study
systems of disk-shaped particles [50, 164], spherical particles [28, 51] and
even two-dimensional non-convex particles of low aspect ratio [177]. Due
to the complexity of the behaviors we observed, this analysis would first be
performed in canonic configurations such as shear flows. We anticipate that
even in these simple configurations, valuable insight will arise, especially re-
garding the topology of the contact force network, the pressure distribution
through the granular assembly, and the hypothetical emergence of one or
several “backbones” carrying most of the stress.

Finally, with regards to applications to biological flows, two improve-
ments can be made. Firstly, the contact detection between a solid body
and a triangulated object is an important feature that is currently under
active development by a member of our group. Indeed, while in Part II the
capsules follow the streamlines of the flow field and thus do not collide, the
motion of dispered solid phase is usually not exactly following the flow field7

[194]. As such, a contact detection algorithm between a solid white blood

7This is because a sub-time stepping approach is used in order to prevent the fluid
solver to be subject to the same time step restrictions as the DEM solver.
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cell and a triangulated RBC need to be implemented in order to prevent any
unphysical overlap. The same applies to the contact detection between a
solid platelet and a triangulated blood vessel wall, for instance. The second
improvement relates to the physics of colliding bodies in a biological context.
While we can expect fast binary contacts between two flowing platelets or
white blood cells, the same cannot be said if the configuration of interest
involves the aggregation of activated platelets at the location of a wound. In
this configuration, platelets secrete glycoproteins which enable their adhe-
sion. In this case, a cohesive contact model [1, 141, 173] needs to be adopted
and could constitute an innovative research direction in the field of DEM
applied to biological systems.

7.2 Immersed elastic capsules

In Chapter 4, an adaptive Front-Tracking Method (FTM) was developed,
implemented and validated. After reviewing the literature on numerical
simulations for capsule-laden flows, we described the equations governing
our problem: the Navier-Stokes equations governing the fluid phase are cou-
pled with the equations governing the elastic and bending stresses in the
immersed membrane. The two sets of equations are coupled through of
a body-force term in the momentum equation of the Navier-Stokes solver.
Then, we presented our adaptive FTM: in summary, the capsule membrane
is discretized using a triangulation, where the elastic strains and stresses as
well as the membrane curvature can be conveniently computed, by means
of a linear Finite Element Method (FEM) and a paraboloid fitting algo-
rithm. The Lagrangian triangulation communicates with the background
Eulerian grid by means of the Immersed Boundary Method (IBM), where
velocity interpolations and force spreadings occur on the stencils of regular-
ized Dirac distributions centered on the Lagrangian nodes of the membrane
triangulation. The adaptive Octree grid used to solve the background fluid
is forced at its maximum refinement level on the supports of the regular-
ized Dirac distributions, i.e. in a neighborhood of the membrane. This
imposed feature is not restrictive in most cases, because the dynamics of the
flow is driven by the boundary layers around the membrane. However, in
the rare cases where this restriction may be limiting, we proposed in Ap-
pendix C an innovative and promising way to allow the capsule membrane
to span different levels of grid refinement. After presenting the numerical
implementation of our adaptive FTM, we validated it with a series of test
cases of increasing difficulty. We validated the computations of the mem-
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brane forces, and then validated the coupling between the membrane and
the fluid solvers. We compared our computed results to results published in
the literature in many different configurations, featuring: a single capsule
and two interacting capsules, the presence of elastic and bending forces, a
unity and a non-unity viscosity ratio, and an inertial and a non-inertial flow
regime. In all these configurations, our computed results showed excellent
qualitative and quantitative agreement with the literature. We then pre-
sented two configurations that would be out-of-reach without the adaptive
feature of our FTM. In the first configuration, the extreme deformation of
a capsule flowing through a narrow constriction is considered. In this case,
the Eulerian grid resolution is required to be very small in the constricted
region. Our adaptive solver allows to coarsen the rest of the computational
domain, thus rendering this simulation achievable. The second demonstra-
tion case we considered involved a capsule flowing through a very large and
complex three-dimensional geometry. More specifically, we considered the
inertial migration of a capsule through a helical channel. Our adaptive solver
allowed to refine the Eulerian grid only in the regions of interest, namely
around the capsule membrane and the channel walls. This particular case
demonstrates the ability of our adaptive FTM solver to realistically simulate
resolved capsules flowing through biologically-relevant microfluidic geome-
tries in an inertial regime. In addition to presenting the aforementionned
results, we made our FTM solver fully open-source as part of the Basilisk
platform. We also provided the necessary scripts allowing to seamlessly re-
produce our simulations and our post-processing routines, in an effort to
render our research as easily reproducible as possible.

In Chapter 5, we used our newly implemented adaptive FTM solver in
order to investigate the non-intertial and inertial motion and deformation
of capsules through a sharp corner. The geometry we considered consists
of a square channel of width three times the radius of the capsules. In the
first part of our analysis, we studied the motion and trajectory of a single
capsule through this geometry for four Reynolds numbers ranging from 0.01
to 50, and four Capillary numbers ranging from 0.075 to 0.35. We analyzed
the deviation of the capsule centroid velocity from its steady state as well as
its normalized area. As expected, the velocity deviations (respectively, the
normalized area) displays a minimum (respectively, a maximum) when the
capsule is located inside the corner, with increasing extrema as the Capillary
and Reynolds numbers increase. For Reynolds numbers varying from 1 to
50, we uncovered a linear dependence of the maximum area with respect to
the Reynolds number. This particular result is of striking importance as it
can help experimentalists anticipate capsule breakup in inertial microfluidic
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devices. We then introduced a second capsule, released in the wake of the
primary capsule at a normalized gap d varying from one diameter to one
fourth of a diameter. We found that the velocity (respectively the area)
of the trailing capsule is lower (respectively larger) than that of a solitary
capsule. However these deviations are small, of the order of a few percents,
which is likely due to the strong confinement ratio of the configuration we
consider. Moreover, we found that when the initial interspacing distance
is small, capsules tend to repel each other: in other words, there exists
a minimum stable interspacing distance between two confined capsules in
a square channel. A legitimate question is that of the accumulation of
these behaviors when more than two capsules are considered. As such, we
then studied the motion of a train of ten capsules in a very interacting
configuration of d = 0.125. Both the velocity deviation and the normalized
area increase as the capsule of interest is located further downstream in
the train of capsules, before reaching steady velocities and deformed areas
after the ninth capsule. As sharp corners are very common in microfluidic
devices, our study sheds light on the strains and stresses felt by biological
cells as they flow through this geometry. In particular, the surprisingly low
interactions between leading and following capsules even in inertial regimes
is welcome, as it allows to numerically study this system in the simplified
case of a solitary capsule. As this study was conducted in a simplified
domain, a next promising step would be to consider a larger, more realistic
microfluidic channel geometry such as the inertial centrifugation device of
Fang et al. [52] or the various zigzag size-segregation devices studied in
Bazaz et al. [22].

Prior to implementing our adaptive FTM solver described in Chapter
4, we investigated the adaptive simulations of capsules in a fully Eulerian
framework, i.e. without introducing a triangulation of the membrane. We
presented this investigation in Chapter 6. After discussing the relevant liter-
ature, we introduced the equations describing the capsule and fluid system
in the fully Eulerian flavor. While the Navier-Stokes equations remained
unchanged from Chapter 4, the equations governing the membrane mechan-
ics differ from those presented in Chapter 4. Indeed, in the fully Eulerian
method the membrane strains are computed using a tensorial quantity: the
surface left Cauchy-Green deformation tensor B. As such, the constitutive
equations of the membrane are reformulated in Chapter 6 as a function of
B. The Eulerian method we adopted relies on the Volume Of Fluid (VOF)
method, where the capsule is represented implicitely using a field storing
the volume fraction of the inner fluid, and referred to as the VOF function.
At each time step, the VOF function is advected using the updated velocity
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field, as is the tensor B representing the membrane strains. Using this new
configuration of the membrane, the stresses are computed using the same
constitutive laws introduced in Chapter 4, albeit formulated in terms of B.
The stresses are then transferred to the fluid as a body-force term in the mo-
mentum equation, using a regularized two-dimensional Dirac distribution.
A significant part of Chapter 6 was dedicated to the validation of our fully
Eulerian implementation. We constructed a series of test cases designed to
validate specific parts of our numerical method, which our implementation
passed successfully. Unfortunately, when comparing our method to the lit-
erature in a two-way coupling simulation, we observed discrepancies of the
order of 10% to 15%. We believe that these discrepancies arise from accu-
mulated errors in the computation of the vectors normal to the membrane.
We figured out that in the fully Eulerian method, the normal vectors need to
be known at a very high accuracy because they are used in quadradic forms
to project three-dimensional vectorial and tensorial quantities onto the two-
dimensional membrane. Moreover, when a bending force is included, the
normal vectors need to be differentiated four times. While it is possible
to perform such a high-order differentiation of the geometry in case the
membrane is defined implicitely using a levelset or a phase-field function, it
became clear that the VOF framework is not the best candidate to represent
capsules in a fully Eulerian fashion. As such, we hope that the experience
that we gained in Chapter 6 can be useful to other researchers investigating
a fully Eulerian membrane solver. In particular, a coupled VOF-levelset
method was recently proposed [93], which could combine the advantages of
both methods − exact volume conservation provided by the VOF method
and ease of geometry differentiation provided by the levelset method. As
a general comment, it is difficult to compare the numerous methods able
to simulate capsules: a study reporting the computational performance and
accuracy of the FTM, the phase-field method and the coupled VOF-levelset
method all coupled to the same Navier-Stokes solver would be a welcome
and valuable contribution to the field of capsules simulations.

Even though our adaptive FTM method performs very well in a wide
range of configurations, as discussed in Chapter 4, it can be improved in
several areas. First, one of the main limitations of the current method is the
stability restriction due to the first order time splitting scheme of the IBM.
In the simulations we presented in Part II of this thesis, the time step is set
by trial and error: to our knowledge, there is no stability analysis providing
an upper bound for the time step that would guarantee the stability of the
simulations. Stockie and Wetton [186, 187] analyzed the stability of the IBM
in the context of immersed flexible fibers, and an interesting research direc-
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tion could be to conduct a similar analysis in the case of capsules subject to
elastic and bending stresses. This upper bound would allow to dynamically
adapt the time step of the simulation with the stresses experienced by the
membrane at each discrete time. While a theoretical upper bound for the
time step would certainly be welcome and would allow to always choose its
largest allowed value, in our experience this upper bound can still be ex-
tremely small, especially in highly refined cases such as the capsule flowing
through a narrow constriction presented in Section 4.5.1. One could hope to
bypass the stability restriction by coupling the membrane and fluid problems
in an implicit fashion, rather than the current first order explicit coupling.
Unfortunately, implicit immersed boundary methods lead to linear systems
that are very long to invert, which prohibits this research direction until
more advances are been made towards preconditionners optimized for such
systems [69, 142]. Another possibility would be to use a sub-time stepping
method in order to decouple the membrane and the fluid stability conditions,
as is done in the particle-laden flow community. The latter approach would
imply to evolve the capsule using its own momentum conservation equation.
As a consequence, the Lagrangian nodes on the membrane would not exactly
follow the flow streamlines, thus likely requiring a contact detection method
and an ad-hoc repulsion force between two approaching capsules.

The main strength of our capsule solver is that it is can be used in a wide
variety of flow conditions, with the Reynolds number varying from O(10−3)
to O(102). However, because our solver is so general it does not perform as
well as other implementations specifically designed for given flow conditions,
such as the boundary integral method in the case of non-inertial regimes.
For low Reynolds numbers in particular, our implicit viscous solver inverts a
linear system that is not well conditioned and we observe a drastic decrease
in the performance of our simulations: a case at Re = 10−2 can be up to
twice as long as the same simulation at Re = 10. This issue could be mit-
igated by coupling our adaptive FTM implementation to a Navier-Stokes
solver based on the Lattice Boltzmann Method (LBM). Because the LBM
method is fully explicit, it is generally much faster than PDE-based Navier-
Stokes solvers where the viscous term is treated implicitely, especially at
low Reynolds numbers. As a result, this change would likely dramatically
improve the overall performance of our capsule solver at low Reynolds num-
bers while maintaining good performance at higher Reynolds numbers. An
adaptive LBM solver was recently published by a member of our group,
and it is also implemented in the Basilisk platform [31], thus reducing to
a minimum the implementation efforts needed for an adaptive LBM-based
front-tracking method.
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Since its introduction in the early nineties, one of the main criticisms
against the FTM is its non-trivial parallel implementation. In our case, the
Eulerian Octree grid is distributed over several processors using a Z-ordering
technique: the grid is mapped to a one-dimensional array that is evenly
divided and mapped to the active processors. Consequently the topology
of the domain partition between processors is complex, and it changes from
one time step to another as a result of the dynamic adaptivity of the grid.
Currently, the parallel implementation of our FTM is far from optimal: every
capsule exists and is solved on every processor, and only the distributed
Eulerian velocities are communicated between processors. Because most of
the computing time happens in the Navier-Stokes solver − less than 5% of
the simulation time is spent in our FTM for a single capsule simulation −,
this naive parallel implementation is harmless when the number of capsules
is low. As the number of capsules increases, however, the computing cost
as well as the memory cost increase linearly with the number of capsules.
Our tests showed that beyond 100 capsules, our current implementation
is not viable as most of the computing time is spent in the FTM solver.
The case we considered for this performance test is shown in figure 7.1: a
biperiodic suspension of 100 capsules is sheared with the velocity gradient
along the vertical direction. The rheology of capsule suspensions is of interest
in biology and in many industrial processes [9, 110, 111], and the present
adaptive FTM solver could be especially competitive when the considered
volume fraction ϕ is lower than 30%, i.e. when the adaptive mesh is not
refined in most of the domain and therefore leads to computational speedup.
A better parallelization paradigm than the current naive approach would be
to divide a given capsule into a collection of small patches and to distribute it
to the processors that own the Eulerian grid cells containing its triangulation
nodes. To be more precise, a field would be introduced on the whole Octree
grid. Instead of being populated with real numbers, this field would contain
arrays of Lagrangian nodes, edges and triangles. For the Eulerian grid cells
located away from the capsule, the arrays would be empty. For Eulerian
grid cells containing a Lagrangian node or located in its IBM stencil, the
arrays would contain information about the local patch of the membrane
triangulation. The elastic and bending forces would only be computed by
the processors owning the Eulerian grid cells containing non-empty arrays,
thus dramatically improving the parallel performance. While conceptually
simple, this approach would lead to significant implementation challenges,
and it is not easily achievable in the current version of Basilisk.

Thanks to our adaptive Eulerian grid, we have been able to fully re-
solve the lubrication layers between the capsules and the walls of the fluid
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(a) (b)

(c)
(d)

Figure 7.1: Qualitative view of sheared suspensions of 100 initially spherical capsules:
(a) initial configuration at a volume fraction ϕ = 5%, (b) configuration at ϕ = 5% after 5
reference time units, (c) zoom on interacting capsules located in the lower right corner of
(b), and (d) vizualization of the adaptive grid at time t = 0 and at ϕ = 25%. The open
capsules are a vizualization artifact due to periodic boundary conditions.
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domain. However, in more complex configurations such as channel bifurca-
tions, a node from the membrane triangulation can be located so close to the
wall that its IBM stencil extends outside of the fluid domain. In this case,
according to our implementation, the interpolated velocity outside the fluid
domain would be zero, and the body force term spread outside of the fluid
domain would be ignored. In other words, the integral over space of this par-
ticular regularized Dirac distribution would be stricly less than one, instead
of being exactly equal to one. A naive fix would be to manually force this
integral to be one by introducing a correction coefficient to all of the cells
located at the intersection of the fluid domain and the stencil of interest.
We implemented this idea and we conducted a promising preliminary test
case in a fork geometry where a capsule collides with the walls over a large
surface area, as shown in figure 7.2. At least for the velocity interpolation
step, a more elegant approach would be to force symmetry conditions out-
side of the fluid domain, as is done by default in the ghost fluid method used
to represent immersed solid boundaries [57, 134]. Another approach would
be to use one-sided immersed boundary kernels in order to ensure that only
grid cells inside the fluid domain contribute to the immersed boundary con-
volution operations [13]. To our knowledge, the issue of regularized Dirac
distributions extending outside of the fluid domain is rarely discussed [207]
and has not been investigated in the literature. As such, quantifying the
introduced errors and assessing the need for such “wall-aware” IBM stencils
would be a first step before diving deeper into this approach. Finally, a
promising research direction regarding the adaptive FTM implementation
would be to investigate further the adaptive IBM stencils presented in Ap-
pendix C. Before spending significant resources towards implementing this
approach in three dimensions and in parallel, it would be of interest to study
its asymptotic behavior theoretically. We would like to prove that the adap-
tive feature of the IBM stencils does not degrade the convergence nor the
stability properties of the overall method.

7.3 Perspectives

The numerical tools presented in this thesis have the potential to provide
significant insight into the design of efficient microfluidic tools. In particular,
we demonstrated in Chapter 5 that the dynamics of a capsule is significantly
affected by the presence of neighbors only in the case of small inter-capsule
distances. As such, considering a solitary capsule is sufficient to model
microfluidic devices operating in a dilute regime, at least when the width
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(a)

(b)

(c)

Figure 7.2: (a) Initial pre-collision configuration. (b) Collision of the top capsule with
the channel walls. (c) Post-collision configuration.
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of the channel is comparable to the diameter of the capsule, as was the
case in our study. Simulating the capsule motion through these devices
can help find an optimal geometry in order to accomplish a desired task,
e.g. cell segregation based on size or membrane deformability. Numerical
simulations can also significantly reduce the design schedule of these devices
by suppressing the need to manufacture many intermediate prototypes and
conduct the associated experiments. The adaptive mesh refinement feature
of our solver makes it particularly valuable regarding the aforementionned
applications, as the computational resources are focused where they are most
needed, i.e. around the solitary capsule.

In some cases, it is necessary to consider a large number of capsules,
e.g. to study numerically the in-vivo motion of whole blood. Using cell-
resolved computational fluid dynamics tools to simulate such biologically
relevant in-vivo systems was pioneered by the work of Zhao et al. [219], later
followed by that of Balogh & Bagchi [15]. The former authors were able to
gain insight into the partitioning of RBCs through multiple bifurcations, or
into the cell-free layer emerging between the vessel walls and the suspensed
RBCs [16, 17]. When the volume fraction of capsules is higher than 30%,
adapting the mesh at each time step becomes less efficient than imposing a
fine grid resolution everywhere in the fluid domain. However, as discussed
in Section 4.5.2, when the geometry of the fluid domain is large and the
ratio of its volume with respect to the volume of its bounding box is low,
most of the cells of a uniform Cartesian grid are located in a region of
space where there is no fluid. This poor distribution of Eulerian grid cells
deteriorates the solver performance, especially its memory cost. As such,
our adaptive FTM could be used to simulate systems of complex vascular
networks: prior to the beginning of the simulation, at time t = 0, the
grid is refined everywhere in the fluid domain and coarsened outside; while
for t > 0 the grid remains unchanged. Of course, in these simulations
the number of capsules would drastically increase: Balogh & Bagchi used
O(103) RBCs in [16, 17], while Ames et al. [7] considered O(106) capsules
as a proof of concept for their massively parallel implementation on GPUs.
Assuming our recommendations outlined in Section 7.2 towards an efficient
parallelization of the FTM on octree grids are implemented, we could expect
simulating O(103) to O(104) RBCs8. A simulation containing 104 RBCs at a
biologically relevant hematocrit of 43% with a grid resolution of 32 grid cells
along the largest diameter of the biconcave RBC shape would result in over

8These numbers would even increase to match those of Ames et al. [7] when Basilisk
releases a version compatible with GPUs, which is under current developments.
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1.2 billion grid cells located inside the fluid domain. Such a simulation would
require O(103) CPU processors, which is arguably very computationally
intensive but not out-of-reach [139]. Such large simulations would allow
to quantitatively study various biological phenomena in realistic conditions.
Examples include platelets adhesion to the walls of a blood vessel− a process
known as thrombosis − as they collide with other suspended cells such as
RBCs, or the advection of chemical components in realistic microcirculation
geometries. The latter application is particularly interesting in the context
of targeted drug delivery: it is useful to quantify the concentration profile
of drugs throughout the capillary network, or to quantify the amount of
drugs that remain in the vicinity of a target after their release by a lipid
nanoparticle (NLP) [113]. This specific application would require to model
the drug particles as point-tracers which are advected by the flow, a feature
that would be very easy to implement on top of our adaptive FTM solver
as it would reuse its IBM and advecting methods.

Finally, the numerical tools developed in this thesis are general and can
be applied to other systems than flowing capsules. If no topology changes
are expected, our adaptive FTM method could be used as is to represent
surface-tension driven flows, i.e. droplets and bubbles. These flows are of
primary importance in a wide range of industrial applications, especially
where cooling systems are used, such as in the nuclear energy industry.
Moreover, our adaptive FTM could be modified to represent suspensions of
one-dimensional flexible fibers. The required modifications would be min-
imal: the topology of the mesh would need to be changed from a closed
surface to an open one-dimensional curve, and a solver for Euler’s beam
equations would be used to compute the stress on each fiber [6, 167]. All
other components of the adaptive FTM solver developed in this thesis would
be unchanged, including our implementation of the adaptive IBM, advec-
tion equations, visualization functions, etc. Such suspensions of fibers are
found in various industrial and natural processes such as the pulp and paper
industry (very dense suspensions) or the microplastic pollution in the ocean
(very dilute suspensions). Our adaptive FTM would be particularly well
suited to study the latter application.
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[59] Arthur R. Ghigo, Stéphane Popinet, and Anthony Wachs. A conserva-
tive finite volume cut-cell method on an adaptive Cartesian tree grid
for moving rigid bodies in incompressible flows. Working paper or
preprint, August 2021. (Cited on page 219.)

[60] Frédéric Gibou, Liguo Chen, Duc Nguyen, and Sanjoy Banerjee. A
level set based sharp interface method for the multiphase incompress-
ible navier–stokes equations with phase change. Journal of Computa-
tional Physics, 222(2):536–555, 2007. (Cited on page 141.)

[61] Frederic Gibou, Ronald P Fedkiw, Li-Tien Cheng, and Myungjoo
Kang. A second-order-accurate symmetric discretization of the pois-
son equation on irregular domains. Journal of Computational Physics,
176(1):205–227, 2002. (Cited on page 141.)

[62] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast
procedure for computing the distance between complex objects in
three-dimensional space. IEEE Journal on Robotics and Automation,
4(2):193–203, 1988. (Cited on pages 14 and 210.)

[63] L. Girolami, V. Hergault, G. Vinay, and A. Wachs. A three-
dimensional discrete-grain model for the simulation of dam-break rect-
angular collapses: comparison between numerical results and experi-
ments. Granular Matter, 14(3):381–392, 2012. (Cited on pages 26, 33,
38, and 40.)

[64] L. Girolami, A. Wachs, and G. Vinay. Unchannelized dam-break flows:
Effects of the lateral spreading on the flow dynamics. Physics of Fluids,
25:043306, 2013. (Cited on pages 26 and 33.)

[65] Nicolin Govender, Daniel N Wilke, Chuan-Yu Wu, Johannes Khinast,
Patrick Pizette, and Wenjie Xu. Hopper flow of irregularly shaped
particles (non-convex polyhedra): Gpu-based dem simulation and ex-
perimental validation. Chemical Engineering Science, 188:34–51, 2018.
(Cited on pages 34, 35, 40, and 56.)

189

http://basilisk.fr/sandbox/ghigo/src/myembed.h
http://basilisk.fr/sandbox/ghigo/src/myembed.h


Bibliography

[66] Nick Gravish, Scott V Franklin, David L Hu, and Daniel I Goldman.
Entangled granular media. Physical review letters, 108(20):208001,
2012. (Cited on pages 32, 34, 60, and 61.)

[67] Albert Edward Green and John Edward Adkins. Large elastic de-
formations and non-linear continuum mechanics. 1960. (Cited on
pages 67, 104, and 107.)

[68] Boyce E Griffith, Richard D Hornung, David M McQueen, and
Charles S Peskin. An adaptive, formally second order accurate version
of the immersed boundary method. Journal of computational physics,
223(1):10–49, 2007. (Cited on pages 66 and 219.)

[69] Boyce E Griffith and Neelesh A Patankar. Immersed methods for fluid–
structure interaction. Annual review of fluid mechanics, 52:421–448,
2020. (Cited on page 176.)

[70] Jonathan Gubspun, Pierre-Yves Gires, Clément de Loubens, Do-
minique Barthes-Biesel, Julien Deschamps, Marc Georgelin, Marc
Leonetti, Eric Leclerc, Florence Edwards-Lévy, and Anne-Virginie
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Appendix A

On the contact detection of
solid bodies of arbitrary
shapes

Detecting contacts between potentially colliding bodies is a non-trivial prob-
lem responsible for the majority of the computational resources usage of
DEM simulations. As detecting contact between two rigid bodies of ar-
bitrary shapes is so expensive, a so-called “broad-phase detection” is im-
plemented in order to call the costly “narrow-phase detection” only when
needed. In the following, we present strategies commonly implemented in
smooth DEM solvers for the broad- and narrow-phase detections.

A.1 Broad-phase detection

Consider a granular system ofN particles: if collision is tested between every
pair of particles, the resulting complexity is O(N2). Even when testing for
collision between two particles is very fast − e.g. in the case of spherical
particles − this quadratic scaling would lead to extremely long simulations
as the number of particles increases beyond O(103). A way to improve this
naive approach is to take advantage of the locality of the contact detection
problem: two particles can only collide if they are located close to each other.
As such, several broad-phase detection strategies can be implemented: their
goal is to limit the number of calls to a contact detection algorithm only
to the particles j that are located sufficiently close to a target particle i.
Figure A.1 illustrates two of these approaches: (i) the cell discretization, or
link-cell, and (ii) the bounding boxes.

In the link-cell approach, space is discretized into subregions of size less
than one order of magnitude greater than the characteristic length of the
particles. If two particles are in contact, they must belong to the same
cell or be located in a neighboring cell less than one particle characteris-
tic length away from the cell boundary. In figure A.1, particles that can
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A.1. Broad-phase detection

Figure A.1: Two stages of broad-phase detection: space-discretization in cells and
bounding boxes. Particles with the same color will undergo the bounding boxes broad-
phase detection, and particles which bounded-boxes overlap will launch narrow-phase
detection.

potentially collide share the same color: note that particles located close
to the cell boundaries are collision candidates for particles of several cells.
At the expense of increasing the memory footprint of the DEM solver, this
simple link-cell approach reduces the computational complexity of the con-
tact detection problem from O(N2) to O(N): it is an extremely powerful
approach that is implemented in most DEM solver today, including in the
solver Grains3D used in this thesis [168].

A finer level of broad-phase contact detection is called “bounding boxes”
and is sketched on the right side of figure A.1. In this approach, the con-
tact between two particles A and B is only further investigated if they are
contained in overlapping boxes. These bounding boxes can be aligned with
the axes of the reference frame − in which cases they are referred to as
Axes Aligned Bounding Boxes, or AABB − or rotated so that they match
the particle’s body frame − in which case they are referred to as Oriented
Bounding Boxes, or OBB. A variant of the bounding boxes approach is to
use overlapping circumscribed spheres: this is the strategy implemented in
Grains3D.
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A.2. Narrow-phase detection

Figure A.2: An example of a support mapping sC(v) for the convex C in the direction
v.

A.2 Narrow-phase detection

A.2.1 Prerequisites

The narrow-phase detection in the case of particles of arbitrary convex
shapes is performed by the GJK algorithm detailed in the next section.
This algorithm uses two mathematical concepts that we define below: the
support mapping and the Minkowski sum of convex sets.

First, the support mapping sC(v) of the convex C in the direction v is
the farthest point of C in the direction v. Formally, we can write

sC(v) = sup{x · v,x ∈ C}, (A.1)

where · denotes the inner product. An example of support mapping is shown
in figure A.2. Support mappings for common convex shapes, such as spheres,
boxes, cylinders and arbitrary polytopes are easily derived: a non-exhaustive
list of common support mappings is found in [198].

Then, the Minkowski sum of two convex sets A and B is defined as the
set of the sum of every points in A and B:

A+B = {x+ y, x ∈ A and y ∈ B}., (A.2)

and the concept of Minkowski difference is defined analogously:

A−B = {x− y, x ∈ A and y ∈ B}. (A.3)

A sketch of the Minkowski sum and difference of two convex sets is shown
in figure A.3.
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A.2. Narrow-phase detection

Figure A.3: Minkowski sum and difference of two convex bodies.

A.2.2 The GJK distance algorithm

In 1988, Gilbert, Johnston and Keerthi designed an algorithm which aims is
to compute the distance and the closest points between two convex objects
[62]. In the literature and in this thesis, this algorithm is referred to as
the GJK algorithm. At the core of the GJK algorithm lies the following
property: the distance between the origin and the Minkowski difference
A − B of two convex objects A and B is equal to the distance between
A and B. In particular, when two convex objects overlap, their Minkowski
difference contains the origin, in which case the GJK algorithm returns zero.

The GJK algorithm is an iterative procedure that produces simplicesWk

contained in the convex C = A−B, and which vertices {wi, i ∈ J1, d+ 1K}
lie closer and closer to the origin, where d is the dimension. If A and B
are overlapped, the GJK algorithm terminates after a simplex contained in
C and enclosing the origin has been found. Otherwise, termination occurs
after a desired accuracy is reached: note that in the case of polytopes, the
exact solution is found in a finite amount of steps. A pseudocode for the
GJK algorithm and its corresponding first iterations are shown in algorithm
A.1 and figure A.4. A more in-depth description of this algorithm, as well
as a discussion on termination, pathologic cases and backup procedures are
available in [197, 198].
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A.2. Narrow-phase detection

Algorithm A.1 The GJK distance algorithm

Choose a maximum number of iterations Nmax and a tolerance ϵ
Choose a vector v0 pointing towards a convex C, of support function sC
Compute the point w0 = sC(−v0)
Set W0 = ∅
Set v−1 = (1 + 2ϵ)v0
Set k = 1
while k < Nmax or ∥vk−1 − vk−2∥ > ϵ do

Compute vk as the point of the simplex Wk−1 ∪wk−1 that lies closest
to the origin

Set Wk as the smallest subset of Wk−1 ∪ wk−1 that contains vk
Compute wk = sC(−vk)
Set k = k + 1

end while
Return wk, the point of C closest to the origin

(a) Initialization. k = 0, W0 = ∅ (b) Step 1. k = 1, W1 = {w0}

(c) Step 2. k = 2, W2 = {w0, w1} (d) Step 3. k = 3, W3 = {w0, w2}

Figure A.4: The first interations of the GJK distance algorithm.
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A.2. Narrow-phase detection

Figure A.5: When two particles are colliding, the access to the contact information
is performed by a second call to the GJK algorithm on slighlty shrinked versions of the
particles. In this schematic (not to scale), the dotted lines represent the original shape of
the particles and the solid lines correspond to their shrinked version.

A.2.3 Application to DEM simulations

In smooth DEM simulations, additional information about collision is sought,
such as the penetration depth δn and the point of application of the contact
force. To obtain these quantities, two approaches exist in the literature.
The first approach is to call the GJK algorithm again, on a slightly shrinked
version of the two particles. In their shrinked configuration, the two parti-
cles of interest do not collide anymore and the GJK algorithm returns the
two closest points A and B as well as the distance AB, as shown in figure
A.5. The closest points A and B are then mapped back to the initial shapes
of the colliding bodies, which we denote as C and D in figure A.5, and the
penetration depth δn is the distance CD. This is the approach adopted in
the DEM solver Grains3D used in part I of this thesis [202]. The second
approach consists in outputting the last simplex in the GJK algorithm and
to extract the closest point from this information, using a procedure called
the Expanding Polytope Algorithm (EPA) [180].

Finally, to detect contact between non-convex particles, a property of
interest is that non-convex bodies can be decomposed into a set of convex
“elementary” bodies. As such, collision between two non-convex particles
is performed by calling the GJK algorithm on each pair of their convex
elementary particles [169].
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Appendix B

Granular avalanches of
entangled rigid particles:
supplementary material

B.1 Non-dimensional displacement of the center
of mass of the whole granular assembly

In a dam break setup, the measurement of the run-out distance may be
prone to uncertainties stemming from the dynamics of a few particles lo-
cated at the front of the avalanche, in particular when the system is small.
While we attempted to circumvent this limitation through a systematic im-
age processing routine and were conservative with the associated error bars
− see section Section 3.2.3 − Degaetano et al. [42] instead report the po-
sition of the center of mass of the granular assembly, a quantity that is far
less noisy and less dependent on the dynamics of a few particles at the front
of the avalanche. In fact, in their study of two-dimensional avalanches of
bidisperse particles, Degaetano et al. obtain clearer trends when plotting
the center of mass of the assembly rather than the run-out distance. In this
appendix, we investigate if reporting the position of the center of mass of our
assemblies of monodisperse non-convex particles rather than their run-out
distance yields a similar improvement of the interpretation of our simulation
data.

Figure B.1 shows the non-dimensional final displacement of the center of
mass as a function of the initial aspect ratio, as well as the non-dimensional
run-out distance in our simulations, in our experiments and in the experi-
ments with spherical particles of Lajeunesse et al. [118] and with grit parti-
cles of Balmforth et al. [14]. Focusing on the non-dimensional displacement
of the center of mass, we observe a very pronounced and clearly visible tran-
sition around H0/L0 = 3 where the slope suddenly changes from 2 to 2/3.
We show below how the numerical values of these slopes can be recovered
by means of a simple model. While in figure B.1 the slopes of the run-out
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Figure B.1: Non-dimensional final x-displacement of the center of mass of the granular
assembly (diamond symbols) and non-dimensional run-out distance (all other symbols) as
a function of the initial aspect ratio.

distance in our simulations and experiments seem constant and equal to 1,
Lajeunesse et al. consider aspect ratios of up to 20 and reveal that indeed
at H0/L0 ≈ 3 a slope transition from 1 to 2/3 occurs. Figure B.1 confirms
that in our simulations of monodisperse non-convex particles the displace-
ment of the center of mass seems to be a more relevant quantity to identify
the regime transition at H0/L0 ≈ 3. Therefore, focusing on the center of
mass of the assembly improves the interpretation of the simulation data.
Please note that this observation is presumably true for any particle shape.

We now show with a simple model how the slopes in figure B.1 can be
recovered. For both regimes of small and large aspect ratios, we make the
strong assumption that the slope of the avalanched region is constant, as
formulated by Lajeunesse et al. [118] and roughly verified experimentally
in figure 3.3. This assumption seems to not be valid in the case of buckling
collapses − see figure 3.4 − but since this regime occurs far less often that
the top-driven collapse we can still consider the assumption of constant slope
satisfied.
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(a)

(b)

Figure B.2: Schematics of the avalanche profiles of the granular assembly for low (a)
and high (b) aspect ratios, under the assumption that the slope of the avalanched profile
is constant for a given aspect ratio.

1. Case of small aspect ratios:
In this case, the shape of the granular assembly before and after the
collapse is represented in figure B.2a. We make the additional as-
sumption that only the particles located at a distance less than d
away from the gate experience the avalanche and that d is propor-
tional to H0 (most likely we have d ≈ H0 but this is not needed for
the dimensional scaling). This assumption is again roughly justified by
the results in our experiments and simulations. The non-dimensional
run-out distance ∆L/L0 = (L∞−L0)/L0 equals d/L0 and is therefore
proportional to H0/L0, hence the slope of 1 observed in figure B.1. To
estimate the non-dimensional x-displacement of the center of mass,
∆x/x0 = (x∞ − x0)/x0, we need to first compute its final position
x∞ with respect to its initial position x0 = L0/2. Simply adding the
positions of the centers of mass of the plain white rectangle and the
hatched triangle on the right hand side of figure B.2a, and weighting
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them appropriately, yields:
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which is in agreement with the slope of 2 observed in figure B.1 for
the center of mass for aspect ratios H0/L0 ≲ 3.

2. Case of large aspect ratios:
The case of high aspect ratios is schematically represented in figure
B.2b, where α denotes the angle of the collapsed profile, which may
vary with the aspect ratio H0/L0. Mass conservation yields H0L0 =
H∞L∞/2, and since H∞ = tanαL∞ we obtain:

∆L

L0
=
L∞ − L0

L0
=

√
2H0

L0tanα
(B.2)

Lajeunesse et al. have shown experimentally and by means of a force
balance model [118] that the non-dimensional run-out distance ∆L/L0

scales as (H0/L0)
2
3 for large aspect ratios. This result implies that

tanα is proportional to (H0/L0)
− 1

3 . Focusing now on the center of
mass, we have x0 = L0/2 and x∞ = L∞/3, and we use the mass
conservation identity again to yield:

x∞ =
1

3

√
2H0L0

tanα
⇒ ∆x

x0
=
x∞ − x0

x0
=

1

3

√
2H0

L0tanα
− 1 (B.3)

Since tanα is proportional to (H0/L0)
− 1

3 we recover the slope of 2/3
that we observe in figure B.1 for large aspect ratios.

B.2 Probability density functions of the scaled
contact force magnitude in various regimes

Figure B.3 shows the average PDFs of Fc/⟨Fc⟩ in the top-driven collapse
and in the buckling collapse (a-b) and in the intermittent-stable regime and
in the intermittent-collapsed regime (c-d). Each solid line is an average of
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(a) Linear scale for Fc/⟨Fc⟩ (b) Log scale for Fc/⟨Fc⟩

(c) Linear scale for Fc/⟨Fc⟩ (d) Log scale for Fc/⟨Fc⟩

Figure B.3: Probability density functions (PDFs) of the contact forces Fc just before the
gate is opened, in the cases of (a-b) top-driven regime (black) with buckling regime (blue);
and (c-d) intermittent regime leading to stable (black) and collapsed (blue) behaviours.

N simulations. In figures B.3a and B.3b, Ntop-driven = 50 and Nbuckling = 6,
while in figures B.3c and B.3d, Nstable = 26 and Ncollapsed = 18. The
low number of buckling cases is due to the scarcity of this regime in our
simulations − the buckling collapse occurs in about 10% of the simulations
located in the buckling region of figure 3.6. Overall, figure B.3 shows that
the average PDF of Fc/⟨Fc⟩ in the buckling collapse and the average PDF of
Fc/⟨Fc⟩ in the top-driven collapse overlap very well, and so do the average
PDF of Fc/⟨Fc⟩ in the intermittent-stable regime and the average PDF of
Fc/⟨Fc⟩ in the intermittent-collapsed regime. These results underline the
fact that the distribution of force magnitude does not enable us to a priori
discriminate these regimes from one another and is not a relevant descriptor
in predicting the behaviour of the granular avalanche of our cross-shaped
entangled particles.
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B.3 Raw data for the analysis of the intermittent
regime

Table B.1 shows the raw average contact data for a granular column in the
intermittent regime. The forces on vertical walls are not included, since the
Janssen effect is found to carry on average less than 0.3% of the total weight
of the column.

Table B.1: Average data for the intermittent cases about to collapse (top) and remain
stable (bottom). The symbol σ stands for the standard deviation of the data.

Collapsed case Whole space
Half space close

to the gate
Quarter space close
to the top of the gate

Coordination
number

8.20
σ = 0.07

8.20
σ = 0.07

7.96
σ = 0.11

Number of contact
points on the ground

79.3
σ = 4.0

39.3
σ = 3.4

0

Number of contact
points on side walls

169.2
σ = 5.7

84.3
σ = 3.6

33.0
σ = 3.4

Number of contact
points on the gate

72.8
σ = 4.5

72.8
σ = 4.5

26.1
σ = 3.4

Stable case Whole space
Half space close

to the gate
Quarter space close
to the top of the gate

Coordination
number

8.21
σ = 0.07

8.21
σ = 0.09

8.02
σ = 0.12

Number of contact
points on the ground

81.2
σ = 4.6

40.9
σ = 3.1

0

Number of contact
points on side walls

170.3
σ = 5.3

85.4
σ = 4.0

30.9
σ = 2.5

Number of contact
points on the gate

72.1
σ = 3.1

72.1
σ = 3.1

28.1
σ = 2.7
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Appendix C

Adaptive immersed
boundary stencils

C.1 Method

In the default implementation of our adaptive FTM, a constant grid size
is imposed on the support of the regularized Dirac distributions. To our
knowledge, all adaptive IBM implementations impose this constraint of the
support of the regularized Dirac distributions [68, 174, 200]. In most cases,
especially in flows featuring fixed solids, this limitation is not constraining
because a maximum level of refinement is required along the whole surface
of the solid in order to adequately resolve the flow features. However, in
some flow configurations, the Eulerian mesh needs to be very fine on a small
patch of the surface of the solid, e.g. when resolving the lubrication layer
of two colliding bodies [59? ]. In the case of capsule dynamics, a similar
case was encountered in Section 4.5.1 where the Eulerian cells located near
the tail of the capsule do not need to be at a fine level of refinement (see
figure 4.15). In order to alleviate this refinement constraint, we discuss in
this appendix an implementation strategy allowing the membrane to span
different grid levels.

We begin by introducing the terminology related to the adaptive grid. In
Basilisk, the grid is a collection of cells of different size, which are arranged
in a tree structure, as represented for a two dimensional grid in figure C.1.
A cell located at the end of a branch of the tree is called a “leaf” cell, while
other cells are referred to as “parent” cells. In figure C.1, filled circles denote
leaf cells and open circles denote parent cells. Leaf cells form a perfect tiling
of the space, and physical fields such as velocity and pressure are defined on
leaf cells only. Computationally, parent cells are used only to point to their
children cells.9 In this section, we also denote by “stencil” or “IBM stencil”
the support of the discrete regularized Dirac distribution, which is − in the

9There are some exceptions to this statement, e.g. when prolongation and restrictions
operators are used in order to refine or coarsen the grid, or during a multigrid cycle.
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C.1. Method

Figure C.1: Tree structure of a quadtree grid. The filled circles represent leaf cells while
the open circles represent parent cells.

case of a constant grid − a square of size 4× 4 grid cells in two dimensions
and a cube of size 4× 4× 4 grid cells in three dimensions.

We distinguish two configurations of adaptive IBM stencils: (i) the cell
containing the center of the regularized Dirac distribution − in our case,
the Lagrangian node on the membrane triangulation − is at the lowest
refinement level encountered in the stencil; and (ii) the stencil contains one
or more cells at a lower refinement level than that containing the Lagrangian
node. These two cases are represented in figure C.2a and C.2b, respectively.
The treatment of case (i) is straightforward: if during a velocity interpolation
or a force-spreading operation a non-leaf cell is encountered in the IBM
stencil, the operation of interest is evenly distributed to the daughter cells.
We remind the property of unit integral of the regularized Dirac distribution:∫

Ω
δ(x− x0)dΩ = 1 (C.1)

where Ω is the volume of the computational domain and x0 is the location
of the Lagrangian node, i.e. the center of the regularized Dirac distribution
δ. In order to conserve this property, the velocity is averaged over the
daughter cells in the case of a velocity interpolation, while the forcing term
is multiplied by the volume of each daughter cell later in the Navier-Stokes
solver. A pseudo code for each interpolation and spreading operation is
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C.1. Method

(a) (b)

(c) (d)

Figure C.2: Examples of adaptive IBM stencils configurations. (a) The cell containing
x0 is at the largest level of the stencil. (b) The cell containing x0 is at the lowest level of
the stencil. (c) The cell containing x0 is neither at the largest nor the lowest level of the
stencil. (d) Two successful increases of the stencil size are necessary to obtain a consistent
stencil. The dashed line represents the stencil size based on the level of the cell containing
x0, while the dotted line represents the effective stencil size. The red dot corresponds to
the location x0 of the center of the regularized Dirac distribution.
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C.2. Proof of concept and discussion

provided in Algorithms C.1 and C.2.
The treatment of case (ii) is more challenging. If the procedure used for

case (i) is directly applied to case (ii), unphysical moments can be introduced
in the flow as the isotropy of the stencil can be broken. Such a case is
represented in figure C.2b, where a cell extends outside of the IBM stencil
represented by a dashed line. To fix this issue, we can transform a case (ii)
configuration into a case (i) configuration by requiring that the length of the
stencil side is always 4∆s, where ∆s is the size of the largest encountered
grid cell. The larger stencil is represented in figure C.2 by a dotted line,
while the original stencil is represented by a dashed line. Figure C.2c and
C.2d display two more commonly encountered configurations. In the case
of figure C.2d, the stencil size corresponds to that defined by grid cells two
levels of refinement lower than that of the cell containing the Lagrangian
node. The size 4∆s of the isotropic stencil is determined using a recursive
procedure prior to applying the velocity interpolation and force spreading
routines presented in Algorithms C.1 and C.2.

Algorithm C.1 Recursive averaging of velocities on leaf cells

function average leaves velocities(grid cell, velocity field, aver-
aged velocity, depth)

if is leaf(grid cell) then
averaged velocity.x += velocity field.x/ 2dimension∗depth

averaged velocity.y += velocity field.y/2dimension∗depth

if dimension > 2 then
averaged velocity.z += velocity field.z/2dimension∗depth

end if
else

for k ← 1 to grid cell.number children do
average leaves velocities(grid cell.children[k], velocity field,

averaged velocity, depth + 1)
end for

end if
end function

C.2 Proof of concept and discussion

To validate the adaptive IBM method proposed above, we consider a simple
configuration featuring a two-dimensional capsule in a shear flow. Three
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C.2. Proof of concept and discussion

Algorithm C.2 Recursive spreading of node force onto leaf cells

function spread force on leaves(grid cell, forcing field, node force,
depth)

if is leaf(grid cell) then
forcing field.x += node force.x
forcing field.y += node force.y
if dimension > 2 then

forcing field.z += node force.z
end if

else
for k ← 1 to grid cell.number children do

spread force on leaves(grid cell.children[k], forcing field,
node force, depth + 1)

end for
end if

end function

simulations are performed: (i) a constant grid at level 7 is imposed every-
where, (ii) a constant grid at level 6 is imposed everywhere, (iii) an adaptive
grid of minimul level 6 and maximum level 7 is imposed and remains fixed
in time. A visualization of case (iii) is provided in figure C.3. In all cases,
we measure the Taylor deformation parameter D:

D =
rmax − rmin

rmax + rmin
, (C.2)

where rmax and rmin are the maximum and minimum radii of the capsule,
respectively. The results are plotted in figure C.4. All three considered
configurations are in very good agreement, confirming that the proposed
adaptive IBM stencils lead to satisfactory results in the simple configuration
considered. Moreover, other arbitrary grid refinements were imposed than
that shown in figure C.3, such as a coarse mesh for y < 0 and a fine mesh
for y > 0. All lead to similar satisfactory results.

Besides these promising results, further investigation is needed both on
the theoretical and computational aspects. First, it is important to study
analytically and empirically the order of accuracy of the present method.
In particular, when the stencil spans different levels of grid refinement, the
velocity interpolation and the force spreading operators are essentially taking
the convolution of two functions known at different accuracies: a regularized
Dirac distribution which accuracy corresponds to that of the largest cell
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C.2. Proof of concept and discussion

(a) (b)

Figure C.3: Visualization of the body force term in the x-direction (left) and the IBM
stencils defined by a noisy field (right) in the case of a two-dimensional capsule in a shear
flow where a forced gird refinement is imposed in parts of the computational domain.

in the stencil, and the velocity and body force fields which are known to
higher accuracies in the remaining cells of the stencil. Another question
of theoretical interest is that of the stability: could the proposed adaptive
IBM stencils deteriorate the overall stability of the method? These thoretical
questions are left for future work due to time constraints.

Computationally, the goal of this adaptive IBM method is to reduce the
number of grid cells in order to speed-up the overall simulation. However the
current method also requires additional operations to be performed, mainly
during two stages: (i) when the effective size of the adaptive IBM stencil is
determined, especially in parallel simulation as communications are needed
at every call of a recursive procedure10; and (ii) when performing a velocity
interpolation or a force spreading operation over a stencil spanning cells
of different sizes, as more than the typical 16 (in two dimensions) or 64 (in
three dimensions) cells need to be considered. Estimating the computational
benefit and overload of the present adaptive IBM method is important as
it allows to decide when it should and should not be used. We expect that
both cases can occur depending on specific configurations.

10In our implementation, we ensured that the exact number of MPI communication
events related to the determination of the size of all the IBM stencils is equal to the
∆lmax, where ∆l is the difference between the maximum and minimum refinement levels
in a given stencil, and ∆lmax the maximum value of ∆l over the whole set of IBM stencils.
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Figure C.4: Taylor deformation parameter of a two-dimensional capsule in a shear flow
where a forced grid refinement is imposed in parts of the computational domain. Three
cases are considered: (i) the membrane is at a constant fine level of refinement (solid black
line), (ii) the membrane is at a constant coarse level of refinement (dashed black line),
(iii) the membrane spans two levels of refinement (red line).
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Appendix D

Motion and deformation of
capsules through a corner in
the inertial and non-inertial
regimes: supplementary
material

D.1 Time evolution of capsule areas in the case
of two interacting capsules

Figure D.1 shows the evolution of the areas of the leading and the trailing
capsules in the non-inertial regime (figure D.1a), as well as at Re = 25 and
Re = 50 where the initial interspacing d0 is 1 (figure D.1b) and 0.25 (figure
D.1c).
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D.2. Train of capsules at large initial interspacings

(a) Re = 0.01

(b) d0 = 1 (c) d0 = 0.25

Figure D.1: Temporal evolution of the reduced area A of the leading and the trailing
capsules at various interspacings d0 and various Capillary and Reynolds numbers Ca and
Re.

D.2 Train of capsules at large initial
interspacings

We provide in figure D.2 the time evolution of the area and velocity of each
capsule in a train of 10 capsules flowing through a corner at Re = 50, Ca =
0.35 and a reduced initial interspacing between each capsule d0 = 0.125. As
can be noted in this figure, the capsules in this regime do not interact as
the area and velocity evolution of each capsule is almost identical.
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D.2. Train of capsules at large initial interspacings

(a) Ca = 0.15 (b) Ca = 0.15

(c) Ca = 0.25 (d) Ca = 0.25

(e) Ca = 0.35 (f) Ca = 0.35

Figure D.2: Time evolution of the reduced areas and velocities of ten capsules at Re = 50
and d0 = 1 for Ca = 0.15, 0.25 and 0.35.
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