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We investigate the inertial and non-inertial dynamics of three-dimensional elastic capsules flowing
through a square channel presenting a sharp corner. Our study analyzes the trajectory, surface
area, velocity and membrane stress of the capsules in the case of a single capsule, a system of
two interacting capsules and a train of ten capsules released upstream of the corner. The channel
Reynolds number Re ranges from 0.01 to 50 and the Capillary number Ca, which measures the
ratio of the viscous and elastic stresses, ranges from 0.075 to 0.35. We find that in the inertial
regime, the membrane stretch and stress increase dramatically as compared to the non-inertial
case, and that the velocity overshoot inside the corner is also enhanced. The maximum capsule
deformation is observed to depend nearly linearly on Ca and Re. Additionally, we report a repelling
mechanism between two confined capsules when their initial interspacing distance d is smaller than
a critical value dc. The deformation of the leading capsule is found to be mitigated by the presence
of the following capsule. In the case of multiple capsules flowing through the corner, we observe
that the increase in the maximum surface area of the trailing capsules eventually saturates at
the tail of the train. Moreover, we find that the corner tends to separate the capsules regardless
of their upstream interspacing distances d. This study contributes to the elaboration of practical
guidelines for controlling capsule breakup and predicting throughput in both inertial and non-inertial
microfluidic experiments.

I. INTRODUCTION

Membrane-enclosed fluid objects, or capsules, are everywhere in natural and industrial processes, from red blood cells
(RBCs), circulating tumor cells (CTCs) or flowing eggs in biology to encapsulated substances in the pharmaceutical,
cosmetic and food industries [1]. The study of microcapsules in particular is of primary importance in a variety of
biological applications, such as sorting and enriching solutions of biological microcapsules, e.g. to segregate RBCs
or CTCs, as well as efficiently manufacturing capsules enclosing an active substance in the field of targeted drug
delivery [2, 3]. In the past decade, microfluidic devices have been shown to accomplish a variety of tasks including
cell segregation based on size and deformability [4–7], concentration enrichment [8–10] and cell characterization [11–
13]. Moreover, the increase in computing power has recently allowed numerical studies to contribute to the design of
microfluidic devices. For example, Zhu et al. [4] numerically investigated an original microchannel geometry consisting
of a semi-circular pillar located at the center of a microchannel: their study showed that this design can efficiently
segregate cells based on membrane deformability. Recently, experiments were conducted using their microfluidic
design and concluded that it can indeed sort cells based solely on membrane stiffness, with relatively high efficacy [5].
With regards to cell characterization, Gubspun et al. [11] proposed a method to determine capsule properties such
as the membrane shear modulus by comparing the experimental and numerical “parachute” shape of capsules in a
straight microchannel. While the majority of microfluidic investigations operate in Stokes conditions, in recent years
the design and study of inertial microfluidic devices has risen due to their ability to accurately segregate capsules by
size and to extract them from their solvant [7, 14]. Inertial focusing in microfluidic devices typically relies on a spiral-
shaped channel concentrating heavier capsules to the outer, lower-curvature edge of the channel, while lighter capsules
concentrate closer to the inner, higher-curvature edge. A smooth geometry such as a spiral-shaped channel usually
does not induce a high strain nor stress on a suspended capsule even in inertial regimes, however little is known about
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the strains and stresses induced by commonly encountered sharp geometries such as forks and corners on a capsule
flowing in the presence of inertia. Moreover, the effect of such sharp geometries on the hydrodynamic interactions of
a train of several capsules in inertial regimes is also an open question. More insight in these directions is of practical
interest in the design and operation of inertial microfluidic devices because (i) the devices should not compromise the
mechanical integrity of the capsules, i.e. it is critical to avoid capsule breakup, and (ii) cell-sorting processes typically
operate in very dilute regimes to avoid capsule interactions, while a better understanding of such interactions would
allow to operate these devices at a moderate to high concentration optimizing efficacy and throughput.

In the past four decades, a significant research effort has been invested into the modeling and the study of capsule
deformations in non-inertial regimes, primarily because this regime is encountered in microcirculation such as capillary
vessels and in traditional microfluidic devices. Using formalism from the thin-shell theory [15], Barthès-Biesel & Ral-
lison first published an analytical solution for the time-dependant deformation of an elastic capsule in an unbounded,
creeping shear flow in the limit of small deformations [16]. Over a decade later, Pozrikidis was able to go beyond the
assumption of small deformations using a Boundary Integral Method (BIM) [17]. The same method was used to con-
sider finite deformations of sheared capsules which inner and outer fluid viscosities differ [18], as well as to study the
contribution of bending stresses [19], allowing to consider RBCs suspended in an unbounded shear flow [20]. Besides
unbounded geometries, Zhao et al. [21] simulated RBCs in straight and constricted channels using a spectral BIM.
A similar method was later used by Hu et al. [22] to consider an initially spherical capsule flowing through a square
channel of width similar to the capsule diameter: the originality of their work is that they performed experiments
and showed remarkable agreement between the measured and the computed capsule shape. Concomitantly, Park
and Dimitrakopoulos [23] studied the deformation of a capsule with non-unity viscosity ratio flowing through a sharp
constriction. More recently, Balogh & Bagchi [24–26] used a Front-Tracking Method (FTM) to analyze the motion
and deformation of RBCs through complex geometries resembling capillary vessels found in human microcirculation:
their simulations exhibited in particular the well-known cell-free layer observed experimentally between the RBCs and
the vessel walls [27, 28].

Regarding the study of flowing capsules in the presence of inertia, the aforementioned analytical theory for small
deformations as well as the popular BIM both fall short of accounting for the convective term in the fluid momentum
equation. Doddi & Bagchi [29] first studied inertial capsules in the context of two interacting capsules in a shear
flow using the FTM. They showed in particular that the two capsules engage in spiralling motions at sufficiently
high inertia. The inertial motion of a deformable capsule was then studied in straight microchannels [30, 31], where
several equilibrium positions are found away from the channel centerline, along the cross-section diagonals. With
regards to curved channels, Ebrahimi & Bagchi [32] recently investigated the migration of a single capsule over an
impressive amount of varying parameters: the channel Reynolds number, the capsule deformability, as well as the
aspect ratio and curvature of the channel were all varied independently. Their study shows that for sufficiently high
inertia, exactly two focusing locations appear near the centers of the vortices of the secondary flow, known as Dean’s
vortices. However no mention of the membrane internal strains and stresses is found in their work, as their goal was
not to investigate the capsule integrity in such flows.

While straight and curved microchannels are essential components of microfluidic devices, such simple geometries
do not account for the numerous junctions, corners and coils commonly found in these devices. To bridge this gap, Zhu
& Brandt [33] investigated the non-inertial motion and the deformation of a single elastic capsule in a sharp corner.
They showed that the capsule follows the streamlines of the undisturbed flow regardless of membrane deformability.
Due to lubrication forces, the capsule velocity decreases when approaching the corner, reaches a minimum along the
corner diagonal, and rises back to its steady state with an overshoot increasing with deformability. Similarly, the
surface area of the capsule reaches a maximum inside the corner and reaches its steady value with an undershoot
more pronounced as deformability is increased. Also reported in their study is the maximum stress in the capsule
membrane, which can be used to assess mechanical integrity and characterize the cell mechanical properties. They
find that the maximum stress deviation increases and shifts from the front to the top of the capsule with increasing
deformability. Wang et al. [8, 9] later considered the inertial and non-inertial path selection of a single capsule
through Y- and T-junctions, both typically encountered in microfluidic geometries. They observe that at high inertia,
the capsule does not necessarily favor the daughter branch with the largest flow rate, and that this effect is more
pronounced for stiff membranes (corresponding to a low capillary number). Recently, Lu et al. [10] investigated the
interaction and path selection of capsules in a T-junction at moderate inertia, with the goal of enriching capsule
solutions. When considering a pair of capsules, they show that the leading capsule is weakly affected by the presence
of a trailing capsule, but that the reverse is not true. They find that the trailing capsule enters a different branch
depending on the initial interspacing distance and on the flow rate split ratio between the two daughter branches of
the T-junction. They then consider a train of capsules and find two distinct regimes: (i) the interspacing distance is
low and the capsule interaction is high, resulting in an unsteady regime and affecting the trajectories of the capsules,
and (ii) the interspacing distance is large and the capsule interaction is low, leaving the capsule trajectories identical
to that of a single capsule. Interestingly, they report that the critical interspacing distance between two capsules



3

plotted against the flow rate split ratio of the daughter branches results in a master curve independent of membrane
deformability, capsule size, and Reynolds number.

In this study, we investigate the inertial and non-inertial motion and the interaction of deformable capsules flowing
through a sharp corner, which is a very common geometry in microfluidic devices. As the efficiency of these devices
is defined in terms of the capsules throughput, which can be optimized by increasing the flow rate as well as the
concentration of capsules, our objective is two-fold: first, we aim to quantify the effet of inertia on the deformation
of a single capsule in a microfluidic-relevant geometry, second, we seek to describe the hydrodynamic interactions
and deformation differences between leading and trailing capsules when a pair and a train of capsules are considered.
The rest of this paper is organized as follows. In Section II, we describe the governing equations as well as the flow
configuration and the considered parameter space. In Section III, we give an overview of our numerical method and
we investigate the impact of the inlet length. We analyze the motion of a single capsule in Section IV, both in
the non-inertial and in the inertial regimes. Section V is devoted to the analysis of binary interactions of a pair of
capsules, where the influence of the initial interspacing distance is investigated. In Section VI, we consider a train
of ten capsules flowing through the corner and we discuss the velocity and deformation discrepancies between the
leading and trailing capsules. Finally, we conclude in Section VII.

The documented source code allowing to reproduce all of the simulations and figures presented in this study is
freely available online [34].

II. GOVERNING EQUATIONS AND PROBLEM STATEMENT

The capsule membrane Γ is assumed infinitely thin and is surrounded by an incompressible, Newtonian fluid of
constant viscosity and density. In all of this study, the capsule inner and outer fluids are assumed identical: in
particular their viscosity ratio is unity. The fluid is described by the mass and momentum conservation equations:

∇ · ũ = 0 (1)

∂ũ

∂t̃
+ ũ · ∇ũ =

1

ρ̃
∇p̃+ ν̃∆ũ+

1

ρ̃
f̃b (2)

where ũ is the velocity field, p̃ is the pressure field, ρ̃ is the density, ν̃ = µ̃/ρ̃ is the kinematic viscosity, µ̃ is the

dynamic viscosity and f̃b is a body term accounting for the action of the membrane on its surrounding fluid. The
dimensional quantities are denoted by the ∼ symbol. The membrane exhibits elasticity and bending resistance, and
its action on the fluid is local, resulting in the following expression for f̃b:

f̃b =
(
f̃elastic + f̃bending

)
δ̃(x̃− x̃Γ), (3)

where δ̃(x̃− x̃Γ) is a Dirac distribution that is non-zero on the surface of the membrane.
The shear and area-dilatation membrane stresses are described using the thin-shell theory, and are briefly summa-

rized here. The interested reader is referred to Green & Adkins [15] as well as to the analytical study of Barthès-Biesel
& Rallison [16] for more details. We adopt a neo-Hookean law [15], which surface strain-energy function is expressed
as:

W̃s
NH

=
Ẽs

2

(
λ2

1λ
2
2 +

1

λ2
1λ

2
2

)
, (4)

where λ1,2 are the principal stretches in the two tangential directions, and Ẽs is a shear modulus. The principal
stresses σ̃1,2 are given by:

σ̃i =
1

λj

∂W̃s
NH

∂λi
, i, j ∈ {1, 2}, i 6= j. (5)

The bending stresses for biological membrane are governed by the Helfrich’s bending energy Eb [35, 36]:

Ẽb =
Ẽb

2

∫
Γ

(2κ̃− κ̃0)
2
dS, (6)
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(a)

(b)

FIG. 1: (a) Schematic of the geometry of the fluid domain. The channel has a square cross-section of side length 3ã. (b) Visualization
of the full channel and the computational grid over the symmetry plane of the channel.

where Ẽb is the bending modulus, κ̃ is the mean curvature and κ̃0 is a reference curvature. Taking the variational
formulation of Eq. (6) leads to the bending force per unit area Ã:

f̃bending/Ã = −2Ẽb(∆s(κ̃) + 2(κ̃− κ̃0)(κ̃2 − κ̃g + κ̃0κ̃))n, (7)

where κ̃g is the Gaussian curvature and n is the outer normal vector.

At t = 0, an initially spherical capsule of radius ã is placed in a square channel of width W̃ = 3ã at a distance
h̃0 = 30ã from a sharp corner, as represented in Fig. 1. An average cross-section velocity Ũ0 is imposed at the inlet
boundary, while the outflow boundary condition ∂ũn/∂n = 0 is imposed at the outlet boundary. When several
capsules are considered, we use the same initial conditions as Lu et al. [10]: a trailing capsule is inserted in the

simulation only after the centroid of its preceding capsule has advanced by a distance d̃. Our problem is governed by
the trailing dimensionless numbers:

1. The channel Reynolds number Re = ρ̃Ũ0W̃/µ̃,

2. The Capillary number Ca = µ̃Ũ0ã/Ẽs, representing the ratio of viscous stresses over elastic stresses,

3. The reduced bending stiffness coefficient Eb = Ẽb/(Ẽsa
2),

4. The confinement ratio β = 2ã/W̃ ,

5. The reduced initial gap between capsules d0 = d̃/2ã− 1.

In this study, the Reynolds number Re ranges from 0.01 to 50, the Capillary number Ca varies from 0.075 to 0.35,
and the reduced initial gap d0 is chosen from 0.125 to 1. The reduced bending stiffness Eb and the confinement ratio
β are both kept constant, with β = 2/3 and Eb = 5 · 10−3 as proposed by Pozrikidis [37]. The reference curvature κ̃0

is equal to −2.09/ã in this study, as is common for some biological membranes such as RBC membranes [38, 39]. In
the rest of this study, we use the capsule radius ã as the characteristic length scale, and we define the characteristic
time scale as the radio of the capsule radius over the average cross-section velocity, i.e. t = ã/Ũ0.

III. NUMERICAL METHOD AND VALIDATIONS

We use our adaptive Front-Tracking Method (FTM) to solve the above equations: we provide below a brief overview
of the numerical method, while an in-depth description is available in [40]. Eq. (1) and Eq. (2) are solved using the
Finite Volume method on an adaptive octree grid using the open-source software Basilisk [41]. The membrane is
discretized using an unstructured triangulation and Eq. (5) is solved using a linear Finite Element Method, while
Eq. (7) is solved using a paraboloid-fitting method. The membrane triangulation and the octree grid communicate



5

(a) (b)

FIG. 2: (a) Centroid velocity of a capsule at Ca = 0.35 and Re = 50 for two grid resolutions: 32 grid cells per initial diameter (red
dotted line) and 64 grid cells per initial diameter (red solid line). The blue curve denotes the deviation in the centroid velocities for these

two grid resolutions. (b) Corresponding shape and grid resolutions of the capsule and the flow field: blue means zero velocity and red
means large velocity.

by means of the immersed boundary method [42, 43], where the Dirac distribution in Eq. (3) is regularized using a
cosine-based formulation:

δ̃(x0 − x) =


1

64∆̃3

3∏
i=1

(
1 + cos

(
π

2∆̃
(x0,i − xi)

))
if |x0,i − xi| < 2∆̃

0 otherwise

, (8)

where x0 = [x0,1 x0,2 x0,3] is the location of a Lagrangian node on the surface discretization of the membrane, and

∆̃ is the local mesh size of the Eulerian octree grid. Extensive validation of the present numerical method was the
focus of our previous study [40] and is therefore not presented here. Nonetheless, the convergence with respect to the
Eulerian grid as well as the release distance of the capsule from the corner are investigated below.

In the immersed boundary method, it is well known that the support of the regularized Dirac distribution may
extend outside of the fluid domain if the immersed object of interest becomes very close to the domain walls [9, 10, 44].
In order to avoid unphysical loss of momentum for the specific membrane nodes close to the wall, it is important to
ensure that none of the supports of the regularized Dirac distribution extend outside of the fluid domain, i.e. that
there always exist more than two grid cells between membrane nodes and the domain boundaries. As such, we simulate
the dynamics of a capsule for two different grid resolutions in the configuration where it is most deformed and is the
closest to the channel wall, as shown in Fig. 2b. Figure 2a shows the velocity of the capsule Ṽ inside and downstream
of the corner for Eulerian resolutions equivalent to 32 and 64 grid cells per initial capsule diameter, as well as the
deviation of the velocities in these two configurations. Excellent agreement is found between the velocities computed
using the two grid resolutions, with the maximum discrepancy lower than 1% and the average discrepancy over the
considered time range of about 0.5%. Moreover, in both configurations it was found that more than 3 grid cells are
present in the lubrication layer between the capsule tail and the upper corner wall. These results indicate that an
equivalent grid resolution of 32 grid cells per capsule initial diameter is sufficient to obtain converged solutions, and
that the present simulations do not suffer from immersed boundary stencils extending outside of the fluid domain.

Next we investigate the influence of the normalized release distance Dc between the initial position of the capsule
centroid and the corner. Indeed, after its release the capsule relaxes from a spherical to an equilibrium steady shape
and it is important that this steady state is reached before the capsule enters the corner. As such, we consider three
initial distances Dc = 15, 30 and 60 in the most challenging configuration at Re = 50 and Ca = 0.35, i.e. the capsule
is highly deformable and placed in a highly inertial flow. The inlet boundary is located at a distance of 90a away from
the corner and is therefore sufficiently far away from the capsule to not alter its response. The norm of the capsule
centroid velocity Ṽ and the reduced capsule surface area A = Ã/4πa2 are shown in Fig. 3, where the origin of the

reduced time t is chosen at the time the capsule reaches a minimum velocity Ṽmin. In Fig. 3a we remark that the
capsule velocity Ṽ at Dc = 15 decreases significantly prior to entering the corner: this is because the initially spherical
capsule is located farther away from the channel walls and is therefore advected faster than when it has reached a
steady shape. We observe that neither the capsule velocity shown in Fig. 3a nor the normalized surface area shown
in Fig. 3b present a steady state before the capsule enters the corner in the case Dc = 15. Therefore a larger initial
distance Dc should be used. When considering Dc = 30, both the velocity and the normalized surface area present
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(a) (b)

FIG. 3: Centroid velocity (a) and normalized surface area (b) of a capsule flowing through a corner from three distinct normalized
release distances Dc = 15, 30 and 60, at Re = 50 and Ca = 0.35.

steady values before the corner. Interestingly, inside and after the corner the capsule velocity and surface area almost
overlap when the capsule is released 15 and 30 initial radii away from the corner, suggesting that the corner resets the
dynamics of the capsule regardless of its previous state. The fact that steady values for the velocity and the surface
area of the capsule are reached before the corner for Dc = 30 suggests that this initial release distance is suitable
for the rest of this study. Interestingly, releasing the capsule at Dc = 60 leads to an unexpected result: the capsule
seems to no longer be in a steady motion as its velocity (respectively its normalized surface area) is slightly decreasing
(respectively slightly increasing) prior to entering the corner. This suggests that in this challenging configuration,
the relaxation of the capsule from a fixed spherical shape to a steady “parachute” shape occurs over very long time
scales. However, the magnitude of the deviations between the capsule velocity and surface area in the cases Dc = 30
and 60 is at most 3%. As the capsule has already reached a pseudo steady state by the time it reaches the corner in
the case of Dc = 30, and as the aforementioned discrepancies are small, we choose Dc = 30 in the rest of this study.
Again, this short study of the impact of the initial release distance on the capsule dynamics was performed in our
most challenging configuration as we considered our highest Reynolds number and highest Capillary number. The
discrepancy between the cases Dc = 30 and 60 is less pronounced − sometimes nonexistent − for less deformable
membranes and less inertial flows.

IV. MOTION AND DEFORMATION OF A SINGLE CAPSULE

We consider the motion of a single capsule through a square duct at Ca = 0.075, 0.15, 0.25, 0.35 and Re =
0.01, 1, 25, 50, extending the investigation carried out in a non-inertial framework by Zhu & Brandt [33]. In or-
der to establish the influence of the increasing effect of inertia on the motion and the deformation of a single capsule,
we first recall the overall dynamics of a capsule moving through a duct corner in the Stokes regime, as detailed in
[33]. The capsule once released from its initial position moves along the center of the channel due to the symmetry of
the flow far from the corner. While approaching the corner, the capsule velocity decreases until reaching a minimum
in the corner region. The capsule experiences moderate to high deformation (depending on the Capillary number
considered) due to the flow acceleration, and its velocity strongly increases; this phenomenon being referred to as
the overshoot of velocity. Further away from the corner, the capsule moves in the downstream branch of the duct,
relaxing to a steady state (shape and velocity), and moving along the center of the duct.

We investigate the influence of the Reynolds number Re and the Capillary number Ca on the dynamics and the
deformation of the capsule, reporting the time evolution of its surface area A scaled by the initial surface area of the
capsule Asphere = 4πã2, as well as the velocity V of the capsule centroid scaled by its equilibrium velocity Veq before
the capsule enters the corner region. In the remainder of this study and unless otherwise stated, the time origin is
chosen such that t = 0 when capsule velocity reaches a global minimum, i.e. Vmin = V (t = 0). We borrow this
convention from Zhu & Brandt [33], as it corresponds to setting the time origin when the capsule is located at the
heart of the corner.
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(a) Re = 0.01 (b) Re = 1

(c) Re = 25 (d) Re = 50

FIG. 4: Temporal evolution of the capsule centroid velocity V at fixed Reynolds numbers.

A. Influence of the Reynolds and Capillary numbers

To characterize the dynamics of the capsule as it flows through the corner, we analyze the time evolution of the
centroid velocity V and the surface area A. Figure 4 shows the velocity of the capsule centroid for Ca ranging from
0.075 to 0.35. Re is constant for each subfigure of Fig. 4. Conversely, Fig. 5 shows the same data as Fig. 4, but with
each subfigure corresponding to a constant Ca. From both figures, we observe a general trend for all cases: the capsule
approaches the corner with a steady velocity Veq, then reaches a global minimum Vmin and a global maximum Vmax

as it flows through the corner, and relaxes back to Veq downstream of the corner. Moreover, we observe in Fig. 4
that the velocity extrema increase with increasing Ca. In the more inertial regimes especially, the maximum velocity
deviation of the capsule at Ca = 0.35 is close to three times that of the capsule at Ca = 0.075.

We note from Fig. 5 that the curves corresponding to Re = 0.01 and Re = 1 practically overlap, indicating that the
capsule motion in low inertial regimes is very similar to that in the non-inertial regime. As the Reynolds number is
increased to 25 and 50, major deviations from the non-inertial regime appear. First, as the capsule enters the corner
zone, a local maximum appears in the capsule velocity, which is independent of the Capillary number, and is about
1% greater than Veq at Re = 25 and 2% greater than Veq at Re = 50. This local maximum is due to the migration
of the capsule across the centerline of the secondary channel: in this process the capsule is located far away from the
channel walls and is therefore less subject to their confinement effect. Then, the minimum velocity Vmin is reached
in the heart of the corner. Interestingly, at small Ca, Vmin is observed to be independent of the Re, as can be seen in
Fig. 5a at Ca = 0.075. In contrast, in the case of larger Ca the minimum velocity of the capsule increases slightly with
Re. A difference of about 4% is observed for Vmin as Re increases from 0.01 to 50 for both Ca = 0.25 and Ca = 0.35.

As the capsule exits the corner zone and migrates to the channel centerline, its velocity reaches its maximum value
Vmax which increases with increasing Re and Ca: at Ca = 0.075, Vmax increases by 3% between Re = 0.01 and
Re = 50 while at Ca = 0.35, Vmax increases by about 8% between Re = 0.01 and Re = 50. Then, the capsule velocity
relaxes back to its equilibrium value and its relaxation time increases with increasing Re. Interestingly, velocity
undershoots are observed during the relaxation stage in the inertial regime, which magnitude increases with Re. The
relaxation time does not depend on Ca.

The time evolution of the normalized capsule surface area A is shown in Fig. 6 for fixed Re and in Fig. 7 for fixed Ca.
We observe that the surface area presents a maximum Amax at around t = 1 before relaxing to its equilibrium value
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(a) Ca = 0.075 (b) Ca = 0.15

(c) Ca = 0.25 (d) Ca = 0.35

FIG. 5: Temporal evolution of the capsule centroid velocity V at fixed Capillary numbers.

Aeq. Unsurprisingly, Fig. 6 confirms that a large Ca, i.e. a highly deformable capsule, results in a greater surface area
than for lower Ca. Figure 6 also shows that the magnitude of the maximum surface area increases with Ca. Moreover,
when large Ca are considered the time evolution of the capsule surface area presents some undershoots that are more
pronounced as Re is increased. Additionally, Fig. 7 reveals that Re has a very strong influence on the deformation
of the capsule, especially at large Ca: at Ca = 0.075, Amax/Aeq increases from 2% to 8% between Re = 0.01 and
Re = 50, and at Ca = 0.35 it increases from 8% to a staggering 22% between Re = 0.01 to Re = 0.35. In particular,
at Ca = 0.35 the maximum capsule surface area increases from 9% to 40% of the surface area of a sphere between the
non-inertial and the highly inertial regimes. These surface area deviations are very large and are discussed further in
the next section.

B. Maximum deformation of the capsule

The maximum surface area Amax of the capsule is presented in Fig. 8, as a function of both the Reynolds number and
the Capillary number. To better analyze the trends in this figure, we also report the maximum area at intermediate
Reynolds numbers, namely at Re = 12.5 and 37.5. The data reported in Fig. 8 clearly exhibits a double linear scaling
of Amax with both Ca and Re as long as Ca is below 0.35 − at Ca = 0.35, the shape of the curve Amax(Re) is
slightly concave. The slope of the scaling is about 0.003 for Amax(Ca) and 1.12 for Amax(Re). This means that the
capsule maximum deformation responds proportionally to the Capillary number, but also to the Reynolds number.
To our knowledge, this is the first time such a trend has been reported and established for low (Re = 1) to moderate
(Re = 12.5, 25, 37.5, 50) inertial regimes. We believe that this result can be used as a predictive tool for many studies
involving single capsules travelling through duct corners, as the maximum deformation observed for a capsule is a
measure of its mechanical integrity, which is of major interest in many microfluidic applications.

Additionally, we present in Fig. 9 the maximum and minimum velocity of the single capsule flowing through the
corner. In the non-inertial regime, the maximum velocity of the capsule increases with Ca, as shown in Fig. 9a. In
inertial conditions we observe that Vmax increases for Re ranging from 1 to 50. The increase in Vmax between Re = 1
and Re = 50 is significant in Fig. 9a, especially for large Ca. For instance, at Ca = 0.35, Vmax increases by about
8% between the non-inertial and the highly inertial regimes. We then consider the evolution of the minimum velocity
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(a) Re = 0.01 (b) Re = 1

(c) Re = 25 (d) Re = 50

FIG. 6: Temporal evolution of the capsule surface area A at fixed Reynolds numbers.

(a) Ca = 0.075 (b) Ca = 0.15

(c) Ca = 0.25 (d) Ca = 0.35

FIG. 7: Temporal evolution of the capsule surface area A at fixed Capillary numbers.
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(a) Amax as a function of Re (b) Amax as a function of Ca

FIG. 8: Maximum surface area Amax as a function of Re and Ca for a single capsule passing through the corner.

(a) Vmax (b) Vmin

FIG. 9: Maximum (minimum) velocity Vmax (Vmin) as a function of Re and Ca for a single capsule passing through the corner.

Vmin for a single capsule at various Ca and Re in Fig. 9b. In general, we observe that the minimum velocity decreases
with Ca in both the non-inertial and the inertial regimes for Re ≤ 25. In Fig. 9b, we also observe a non-monotonous
behavior of Vmin at low inertia and at sufficiently high Ca: for Ca ≥ 0.15, Vmin first decreases with increasing Re,
reaching a minimum for Re = 12.5, before increasing sharply at Re > 12.5. Overall, we observe from Fig. 9 that the
presence of inertia tends to increase both velocity extrema of the capsule, especially at large Ca.

A quantity of practical interest to experimentalists is the maximum stress experienced by the capsule, as it can be
used to predict a priori if a given geometry can induce plastic deformation or even breakup of the capsule membrane
[5]. More specifically, it is the largest eigenvalue σ̃2 of the stress tensor σ̃ that can bring insight into the mechanical
integrity of the membrane. In Fig. 10, we show the maximum and average values of σ̃2 over the membrane surface
as the capsule approaches and flows through the corner at Ca = 0.35 and Re = 1, 25 and 50. We observe that
σ̃2, avg follows a trend very similar to that of the capsule surface area observed in Fig. 7d: σ̃2, avg varies smoothly with
time, presents a maximum near t = 1 and a local minimum near t = 2.5, and the value of the maximum deviation
from steady state nearly doubles between the low and moderate inertial cases Re = 1 and Re = 50. We also note
that the steady state value of σ̃2, avg prior to entering the corner is independent of Re, as was observed in the case
of the capsule surface area in Fig. 7d. In particular, we find by comparing Fig. 7d and 10 that at Ca = 0.35, a
non-dimensional surface area A of about 1.14 leads to an average non-dimensional membrane stress of about 0.4. The
steady state of the maximum stress σ̃2,max, however, increases by about 40% between the low inertial case (Re = 1)
and the moderate inertial cases (Re = 25, 50). Inside the corner, σ̃2,max increases by nearly 75% between Re = 1 and
Re = 50, confirming that a capsule in a moderate inertial regime has a higher risk of breakup than in a low inertial
regime.

It is worth noting that for all Re, the value of the maximum stress σ̃2,max is about double that of the average
stress σ̃2, avg: since we showed previously that σ̃2, avg is closely related to the capsule surface area − a quantity that
is relatively easy to measure experimentally −, this observation can be used by experimentalists as a rule of thumb
to estimate the maximum stress in the capsule membrane and assess the mechanical integrity of the membrane.
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Re = 50

Re = 25

Re = 1

FIG. 10: Left: Maximum and average tensions in the capsule at Ca = 0.35 and Re = 1, 25 and 50. Right: Capsule shape colored by σ̃2
when σ̃2,max reaches its maximum.

C. Evolution of the capsule shape

We now illustrate the temporal evolution of the capsule travelling through the corner. Figure 11 shows the outline
of the capsule in the symmetry plane z = 0 for successive discrete times. The capsule outlines are given for Ca = 0.075
and Ca = 0.35 and Re = 0.01, 25 and 50. Prior to entering the corner, the capsule adopts a steady shape that is
determined by the confinement of the walls. In the case of Ca = 0.35, we observe the well-known “parachute” shape.
Upstream of the corner, the trajectory of the capsule coincides with the centerline of the primary (vertical) channel.
As the capsule flows through the corner, the capsule deviates from the channel centerline: in the non-inertial regime,
Zhu & Brandt [33] showed that the capsule trajectory closely matches the flow streamlines. We obtain the same
conclusion in the inertial regime. When inertia is considered, the capsule trajectory crosses the horizontal centerline
of the secondary channel and comes increasingly close to the upper wall as Re increases, before relaxing to the channel
centerline.

Figures 11a and 11b show clear differences in the effects of Ca in the Stokes regime. Increasing Ca from 0.075 to 0.35
causes the equilibrium shape of the capsule to change from an slightly deformed spheroid to a concave “parachute”
shape. For a small Ca = 0.075, the equilibrium shapes of the capsule remain similar as Re increases from Re = 0.01 to
Re = 50 (see Fig. 11a, 11c, and 11e). However, the deformation of the capsule becomes more evident inside the corner
at higher Re, particularly in Fig. 11e. After passing the corner, the capsule shape returns to its steady spheroid shape
observed in the Stokes regime for all values of Re. In the case of a high Ca = 0.35, we observe that the equilibrium
shape of the capsule is more and more concave as Re increases. Inside the corner, the capsule is highly elongated
and presents an increasingly long tail for increasing Re − e.g. Fig. 11f in the case of Re = 50. In the highly inertial
regime, strong lubrication interactions occur between the capsule and the top wall, resulting in a flat top surface.

In figures 12a and 12b, we present the single capsule outline with the maximum surface area Amax and the maximum
velocity Vmax inside the corner for all the cases investigated in this section. Inside the corner, the maximum surface
area of the single capsule is reached when it approaches the upper wall and it is quickly followed by the maximum
velocity. From figures 12a and 12b, we observe in particular that a high Re leads to an elongation of the capsule in
the streamwise direction, while a high Ca increases the concavity of the capsule. Moreover, we note that the centroid
of the capsule moves closer to the rim of the outline at high values of Ca: note that the centroid drawn in figures
Fig. 11-12b corresponds to the centroid of the three-dimensional capsule, not to that of the two-dimensional outline.
The results shown in figures 11-12b indicate that Ca has a significant effect on capsule deformation, while Re has a
more pronounced effect on the trajectory of the capsule as well as its deformation resulting from the lubrication layer
against the top wall of the corner. In particular, at high Re, the capsule undergoes significant stretching, which may
cause damage or even rupture in microfluidic devices. Understanding the effects of Re on capsule deformation and
the resulting damage is crucial in designing efficient and reliable microfluidic devices.

D. Discussion on the Stokes regime

We observe in figures 7 a surprising, non-monotonous behavior of the capsule surface area around Re = 1: at large
Ca, the surface area of the capsule is smaller at Re = 1 than at Re = 0.01 and Re = 25. Additionally, in Fig. 7a the
steady surface area of the capsule at Re = 0.01 and Ca = 0.075 downstream of the corner is about 1% lower than the
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(a) (b)

(c) (d)

(e) (f)

FIG. 11: Sequence of Capsule outlines for different Ca and Re. The time between each frame is t = 1.5.

(a) (b)

FIG. 12: Outlines of a single capsule passing a corner with (a) maximal surface area A and (b) maximal velocity vmax at various Re
and Ca.
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(a) (b)

FIG. 13: (a) Trajectory of the two capsules at different Ca and Re. (b) Outlines of the leading and trailing capsules at
Ca = 0.35, Re = 50, d0 = 0.25, with comparison to a single capsule.

initial spherical surface area of the capsule, indicating a small loss of the internal capsule volume. The cause of these
observations may be related to the limitations of the FTM coupled with a sub-optimal choice of numerical parameters
in the case of Re = 0.01 only. Indeed, the immersed boundary method is known to conserve volume asymptotically
rather than to machine precision. In earlier IBM studies involving capsules, the volume loss is always small, typically
below 1% [8–10, 24]. Moreover, Stokes conditions are known to be challenging for PDE-based incompressible Navier-
Stokes solvers, as the matrix inverted in the velocity viscous Poisson problem is less well conditioned at low Re.
While it is worth noting that the capsule surface area in the Stokes regime should be interpreted with caution, these
limitations only affect the capsule surface area and not the centroid velocity. Moreover, our solver was extensively
validated in Stokes conditions in [40] and showed excellent agreement with the BIM as well as other FTM solvers.
As such, while further investigation should be conducted in the Stokes regime, it cannot be excluded that at high
Ca the capsule surface area at Re = 0.01 is physically slightly greater than that at Re = 1. Finally, the main focus
of the present work is to investigate the inertial motion and deformation of capsules through a sharp corner, i.e. in
conditions where our FTM solver does not suffer from the limitations outlined above.

V. SYSTEM OF TWO CAPSULES

In this section, we consider two identical capsules flowing through the corner as we vary the normalized interspacing
distance d = d̃/2ã− 1 between the capsules as well as the Reynolds and Capillary numbers. Lu et al. [10] previously
considered the binary interaction of capsules flowing through a T-junction: they showed that when d0 ≥ 1.3 the
trailing capsule has minimal impact on the motion of the leading capsule. In contrast, in their T-junction geometry
Lu et al. observed that the motion of the trailing capsule is significantly affected by the presence of the leading
capsule. To gain insight into the physical features relevant to capsule interactions through a corner in the inertial
and non-inertial regimes, we select small values for the normalized interspacing distance d0 = 1, 1/2, and 1/4 and we
examine phenomena such as migration, dynamics and deformation of the leading and the trailing capsules.

A. Qualitative analysis: trajectory and capsule shape

We first analyze the trajectory and the qualitative shapes of the pair of capsules as they flow through the corner.
Figure 13a shows the trajectory of the capsules at Re = 0.01, 25 and 50 and Ca = 0.15 and 0.35. We note that all
curves corresponding to the same Ca overlap: Ca has no impact on the path of either the leading or the trailing
capsule. Likewise, we observe no significant difference in the trajectories of the leading and the trailing capsules, unlike
the strikingly different paths reported in the case of a T-junction [10]. In fact, the key parameter that controls the
capsule trajectory is the Reynolds number. As Re increases, the inertia drives the capsule closer to the upper channel
wall, as observed in Section IV in the case of a single capsule. We then illustrate the capsule shape on the symmetry
plane z = 0 in Fig. 13b for the most deformed capsule configuration corresponding to Ca = 0.35 and Re = 50 with
an initial interspacing distance d0 = 0.25. We compare the outlines of the leading and the trailing capsules to that
of a single capsule in the same conditions. Qualitatively, the deformation of interacting capsules is not significantly
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(a) (b)

FIG. 14: Temporal evolution of the velocity V and the surface area A of capsules at Ca = 0.35, Re = 50 with d0 = 0.25: a comparison
of the leading, trailing and a single capsule.

different than that observed in the case of a single capsule. Perhaps more surprisingly, the qualitative outlines of the
leading and the trailing capsules are also very similar, almost overlapped, even in the strongly interacting configuration
corresponding to d0 = 0.25. Note that this qualitative shape analysis relies on the outline of the capsule in the plane
of symmetry z = 0, while the actual three-dimensional shape of the leading and trailing capsules may differ more
strongly.

B. Quantitative analysis: velocity and membrane surface area

We now compare the temporal evolution of the velocity of the centroids of the capsules as well as the time evolution
of their surface areas, as plotted in Fig. 14. To simplify the identification of interaction features, we first focus on the
most deformed configuration corresponding to Ca = 0.35, Re = 50 and d0 = 0.25. For reference, we also plot the
evolution of a single capsule under the same conditions in red. Throughout the remainder of this study, and unless
otherwise stated, the velocity of interacting capsules is normalized by the equilibrium velocity Veq of a single capsule
for the same Capillary and Reynolds numbers. This normalization choice allows for an unbiased comparison between
the velocities of the leading and the trailing capsules. In this section we also denote the reduced velocity of the single
capsule by Vs, that of the leading capsule by Vl and that of the trailing capsule by Vt. Similarly, we denote by As,
Al, At the normalized surface areas of respectively the single, leading and trailing capsules.

In Fig. 14a, we observe that the velocity of the leading capsule is affected by the presence of the trailing capsule
before it reaches the corner, as it is about 1% higher than that of a single capsule. However, the extrema of Vl as it
flows through the corner closely match those of Vs. After the corner, Vl is about 2% larger than Vs but slowly relaxes
back to Vs further downstream. With regards to the trailing capsule, we note that its velocity is more markedly
affected by the presence of the leading capsule. Prior to reaching the corner, Vt is about 1% lower than Vs, but inside
the corner its minimum value is 4% lower than Vs. However, the maximum of Vt is identical to that of both Vl and
Vs. Downstream of the corner, Vt quickly relaxes back to Vs and maintains a similar value thereafter, eventually
converging to Veq. The time evolution of the surface areas of the pair of capsules is shown in Fig. 14b. The normalized
surface area of the leading capsule Al is clearly influenced by the presence of the trailing capsule, as was observed
above in the case of its velocity. The steady and maximum surface areas of the leading capsule are about 2% lower
than that of the single capsule. In contrast, the steady surface area of the trailing capsule closely matches that of the
single capsule upstream and downstream of the corner, while its maximum value is about 1% higher than that of the
single capsule. We postulate that the small interspacing distance between the two capsules disturbs the wake behind
the leading capsule, which tends to mitigate its deformation and therefore decreases its surface area. Conversely, as
the wake of the trailing capsule is unaffected, the discrepancies between its surface area and that of the single capsule
are less pronounced.

We then present the time evolution of the velocity and surface area of the leading and the trailing capsules at
various Ca, Re and d0. We first focus on the velocity of the capsules, displayed in Fig. 15 for Ca = 0.15 and 0.35
and for d0 = 0.5 and 1. The velocity of both capsules displays a minimum at t = 0 and a maximum at t ≈ 2 at
Ca = 0.15 and Ca = 0.35. The extrema of the velocity are more pronounced as Ca increases. The effects of the initial
interspacing distance d0 on these extrema are less evident but still present: the velocity maxima of both the leading
and the trailing capsules are increased by about 1% as d0 is halved from 1 to 0.5. Interestingly, the relaxation time
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(a) Re = 0.01

(b) d0 = 1 (c) d0 = 0.25

FIG. 15: Temporal evolution of V of the leading and trailing capsules at different Ca, Re and d0.

of Vt to Veq is significantly reduced when compared to that of Vl: about 3 time units in the case of Vt with respect
to more than 10 time units in the case of Vl. Capsule velocities in the inertial regimes at Re = 25 and 50 and at
Ca = 0.15 and Ca = 0.35 are plotted in Fig. 15b and Fig. 15c for d0 = 1 and 0.25, respectively. The results are similar
to that of the non-inertial regime: Ca enhances the velocity deviations and the extrema are more pronounced in the
case of the trailing capsule. Surprisingly, we note that Fig. 15b and Fig. 15c display very similar behaviors: therefore,
the interspacing distance does not seem to impact the capsule velocities inside the corner: its effects are bounded to
the capsule velocities upstream and downstream from the corner. We will come back to this observation in Section
V C.

When analyzing the capsule surface areas for varying Re, Ca and d0, a similar behavior is found: the surface area
of the trailing capsule is consistently greater than that of the leading capsule, and increasing Capillary and Reynolds
numbers and decreasing the initial interspacing distance enhance this phenomenon. In particular we report in Table
I the maximum surface areas of the leading capsule and in Table II that of the trailing capsule. As can be seen from
Table I and Table II, the maximum surface area of the leading capsule exceeds that of the trailing capsule by up to
5%. The full time-dependant data is provided in Appendix A.

C. Time evolution of the interspacing distance

We now analyze the time evolution of the interspacing distance between the two confined capsules considered in
this section. Figure 16 shows the time-dependent interspacing distance for Ca = 0.15 and 0.35, Re = 25 and 50
and d0 = 1, 0.5 and 0.25. In this figure, we note that in all cases, the interspacing distance decrease immediately
after the trailing capsule is released. This is due to the fact that upon release, the trailing capsule is spherical and
therefore located farther away from the channel walls than is the leading capsule, resulting in its initial acceleration
before a steady shape is found − typically within less than five time units. In the case where d0 = 1, the interspacing
distance d is steady until the leading capsule approaches the corner, reaches a minimum then a maximum value
inside the corner and becomes steady again as the trailing capsule leaves the corner region. Interestingly, the steady
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d0 Re = 0.01 Re = 25 Re = 50

1
Ca = 0.15 1.065 1.138 1.193

Ca = 0.35 1.263 1.334 1.399

0.5
Ca = 0.15 1.065 1.135 1.186

Ca = 0.35 1.247 1.323 1.383

0.25
Ca = 0.15 1.068 1.129 1.180

Ca = 0.35 1.236 1.308 1.379

TABLE I: Maximum surface area Amax of the leading capsule at different Ca, Re and d0.

d0 Re = 0.01 Re = 25 Re = 50

1
Ca = 0.15 1.068 1.143 1.201

Ca = 0.35 1.271 1.342 1.417

0.5
Ca = 0.15 1.070 1.144 1.204

Ca = 0.35 1.277 1.345 1.414

0.25
Ca = 0.15 1.069 1.148 1.204

Ca = 0.35 1.277 1.344 1.41

TABLE II: Maximum surface area Amax of the trailing capsule at different Ca, Re and d0.

interspacing distance after the corner is up to 10% greater than its steady value prior to the corner, suggesting that
the corner separates the two capsules. Moreover, the initial interspacing distance is greater in the case Re = 25 than
in the case Re = 50: this is only an artifact of our release mechanism. Indeed, the steady “parachute” shape of the
capsule is deployed faster at Re = 50 than at Re = 25, leading to a shorter initial acceleration phase of the trailing
capsule towards the leading capsule at Re = 50 than at Re = 25. When d0 = 0.5 and d0 = 0.25, we observe that the
interspacing distance steadily increases until the capsules reach the corner region where it displays the same behavior
as in the case of d0 = 1, and continues to increase downstream of the corner. While a steady value of d is not clearly
reached within the considered time range, we can extrapolate the trend and conclude that the interspacing distance
seems to saturate to values ranging from 0.6 to 0.8 depending on Re, Ca and d0. Therefore, the pair of confined
capsules we consider exhibit a minimum stable interspacing distance dmin. Moreover, we note that the slope of d
is greater in the case of lower initial interspacing distances, suggesting that the relative velocity of the capsules is a
function of their interspacing distance. To investigate further this behavior, we show in Fig. 17 the velocity of the two
capsules at Ca = 0.35, Re = 50 and d0 ranging from 0.25 to 1. We observe that the velocity of the trailing capsule is
lower than that of the leading capsule prior to entering and downstream of the corner, and that the velocity difference
increases with decreasing interspacing distance. This velocity difference confirms the above observations in terms of
interspacing distance, in particular that a lower interspacing distance results in a greater relative velocity between the
two capsules, i.e. an enhanced repulsive behavior. Moreover, we note in Fig. 17 that the difference in velocity minima
between the leading and the trailing capsules is always greater than the difference between their velocity maxima.
As a result, the residence time of the trailing capsule inside the corner region is always greater than that of the
leading capsule, and the corner tends to separate the pair of capsules. The present analysis of the binary interaction
of capsules through a corner reveals that the two considered capsules do interact in this geometry, affecting their
motion and deformation. In particular, the trailing capsule tends to be more deformed than the leading capsule, and
the corner tends to separate the pair of capsules. A natural question that arises is that of the accumulation of such
effects if more than two capsules are considered.

VI. TRAIN OF TEN CAPSULES

In this last section, we investigate the behavior of a train of ten capsules flowing through the corner. We insert
each capsule using the same procedure employed in the previous section: a new initially spherical capsule appears
at a distance Dc = 30 radii from the corner as soon as the preceding capsule has advanced by a reduced distance
d̃ = 2ã(1 + d0). The capsules are removed from the computational domain when they are less than one initial
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(a) Ca = 0.15 (b) Ca = 0.35

FIG. 16: Temporal evolution of d for different initial interspacing distance d0 and Reynolds number Re.

FIG. 17: Effects of the initial interspacing distance d0 on the evolution of the capsules velocities V at Ca = 0.35, Re = 50.

diameter away from the outflow boundary. Our goal is to determine if the findings of the previous binary capsule
analysis accumulate when more than two capsules are considered, especially with regards to the increased surface area
of the capsules and the separating effect reported in Section V. As such, we plot in Fig. 18 the normalized surface
area and velocity of each capsule of the train at Re = 50, d0 = 0.125 and Ca ranging from 0.15 to 0.35. The same
figure obtained in the case of d0 = 1 is provided in Appendix B. In Fig. 18, the darkness of the color corresponds
to the position of the capsule in the train: darker means increasing capsule number i.e. further downstream along
the capsule train. As mentioned in Section V, the initial peaks in the surface area and velocity of the capsule are
insertion artifacts and do not contribute to the physics that is the focus of this section. We observe in Fig. 18 that the
behavior of the last capsule is significantly different than that of the rest of the train. In Section V we hypothesized
that the difference in surface areas of the leading and the trailing capsules is due to the fact that the wake of the
leading capsule is significantly affected by the presence of the trailing capsule. The present observation in Fig. 18
corroborates this statement: all of the capsules in the train see their wake affected by a trailing capsule, except in the
case of the last capsule. As a result, its deformation is greater and extends closer to the channel walls, thus decreasing
its velocity. We also remark in Fig. 18 that this effect is enhanced with increasing Ca. While noteworthy in the case
of a pair of capsules, this effect is less pertinent to the study of a train of capsules, as only the core of the capsule
train is relevant to typical microfluidic applications. As such, in the remainder of this section our analysis is focused
on the first ninth capsules of the train.

As expected, a steady state is reached in the straight channel prior to the corner for each capsule and for all Ca.
While the steady surface area remains constant with increasing capsule number, i.e. as we move further downstream
in the train of capsules, we observe that the velocity of the capsules decreases. In particular the difference between
the steady velocity of the first and ninth capsules increases with increasing Ca. As the capsules enter the corner
region, they display the familiar pattern previously described in Section IV and Section V, before relaxing to steady
values. The shape of the deviation pattern is strikingly similar across different capsules of the train, regarding both
the velocity and the surface area of the capsules, except that they are shifted in time and magnitude. More precisely,
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(a) Ca = 0.15 (b) Ca = 0.15

(c) Ca = 0.25 (d) Ca = 0.25

(e) Ca = 0.35 (f) Ca = 0.35

FIG. 18: Time evolution of the reduced surface areas and velocities of ten capsules at Re = 50 and d0 = 1/8 for Ca = 0.15, 0.25 and
0.35.

the surface area curves are shifted upwards with increasing capsule number while the velocity curves are shifted
downwards with increasing capsule number. As a result, the maximum surface area of the capsule increases and
the velocity extrema decrease with increasing capsule number. This behavior is more pronounced as Ca increases.
Additionally, we compare in Fig. 19 the normalized interspacing distance d between each pair of capsules in the train.
In Fig. 19, each curve is shifted in time such that t = 0 corresponds to dmin inside the corner. For all Ca, we observe
that the interspacing distance d(1, 2) between the first and the second capsules increases to a steady value close to 0.5,
and that the corner has marginal effects on the downstream evolution of d(1, 2): this behavior is identical to the case
of two capsules studied in the previous section. However, as we move downsteam in the train of capsules, d increases
slower and slower prior to the corner until it remains constant for capsule numbers greater than 7, at a steady value
d ≈ 0.7 that decreases only marginally with increasing Ca. After the transient regime due to the corner, d(i, i + 1)
for capsule numbers i greater than 7 reaches a steady state that is slighly higher than prior to entering the corner. In
other words, the corner tends to increase the interspacing distance, and therefore exhibits a separating effect. This
seperating effect is observed regardless of the initial interspacing distance d0, as was the case in the previous section
when only two capsules were considered.
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(a) Ca = 0.15 (b) Ca = 0.25

(c) Ca = 0.35

FIG. 19: Temporal evolution of d for a train of 10 capsules at Re = 50 and d0 = 0.125 for (a) Ca = 0.15, (b) Ca = 0.25 and (c)
Ca = 0.35.

FIG. 20: Amax as a function of the capsule number.

Finally, in order to investigate further the influence of the capsule number on the capsule dynamics, we plot in
figures 20-21 the maximum surface area as well as the maximum and minimum velocities of each capsule of the train
for varying Capillary numbers and interspacing distances. The difference in minimum velocity (respectively, maximum
velocity) between the first and the ninth capsule is about 15% (respectively, about 7%) at Ca = 0.35 while it is about
11% (respectively, 2%) at Ca = 0.15. Similarly, the difference in maximum surface area between the first and the
ninth capsule is about 4% at Ca = 0.35 and less than 1% at Ca = 0.15. These results correspond to d0 = 0.125,
while in the case of d0 = 1 only deviations lower than 1% are observed in the extrema of the capsule surface area and
velocity (except in the case of Ca = 0.35 for which velocity deviations of 2% are observed). The very small deviations
observed in the case d0 = 1 indicates that for this interspacing distance the capsules interact very weakly. As such,
there exist a critical interspacing distance dc below which capsule interactions are observed, with 0.125 < dc < 1.

The fact that dc is less than 1 can be surprising, as a normalized interspacing distance of d0 = 1 would typically be
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(a) (b)

FIG. 21: (a) Vmax and (b) Vmin as a function of the capsule number.

classified as a strongly interacting regime in other geometries, e.g. in the T-junction investigated by Lu et al. [10].
The main reason for the low interaction we observed is likely due to the short residence time of the capsules in the
corner region. Indeed, Lu et al. showed that the residence time is determinant in the path selected by the capsules
in a T-junction geometry. Another reason for such a low critical interspacing distance is related to the very confined
configuration we study: the capsule shape and behavior is primarily due to the presence of the walls, while the small
disturbances of the flow field due to the other capsules only marginally contribute to each capsule dynamics. Future
studies could explore the dynamics of a train of capsules in a wider channel, i.e. in a less confined configuration,
where each capsule could be more influenced by the wake disturbances of their preceding neighbor.

VII. CONCLUSION

In the present work, the inertial and non-inertial dynamics of three-dimensional elastic capsules flowing through a
sharp corner are investigated. The capsule trajectory, surface area, velocity and membrane stress are analyzed in the
cases of one, two and a train of ten capsules released upstream of the corner. The channel Reynolds number ranges
from 0.01 to 50, the Capillary number representing the ratio of viscous stresses over elastic stresses ranges from 0.075
to 0.35 and the initial normalized interspacing distance between two capsules is varied from 1 to 0.125. The goal of
this study is to help provide practical guidelines in order to anticipate capsule breakup and estimate throughput in
inertial microchannels.

The case of a single capsule with no inertia was previously studied by Zhu & Brandt [33], who reported that the
capsule follows the flow streamlines closely regardless of the Capillary number. In inertial flows, we found that this
statement is still valid for all considered Reynolds and Capillary numbers. As the streamlines of the inertial flow cross
the centerline of the secondary channel − the horizontal channel downstream of the corner −, the capsule position is
increasingly close to the top wall for increasing Reynolds number, especially in the case of large Capillary numbers.
However no collision between the capsule and the wall of the secondary channel was observed thanks to strong
lubrication forces. In their study, Zhu & Brandt also analyzed the velocity of the capsule centroid and the surface
area of the capsule membrane: they found that the capsule velocity decreases in the corner and increases immediately
after the corner, with an overshoot increasing with membrane deformability. The surface area of the capsule was also
found to reach a maximum slightly shifted in time with respect to the minimum of velocity. In the inertial regime,
we observed that this behavior is enhanced as the Reynolds number increases. However our results at Re = 1 do not
differ significantly from results obtained in the non-inertial regime, which corroborates the same observation made by
Wang et al. [8, 9]. Moreover, at sufficiently high inertia, capsule surface areas lower to equilibrium surface areas are
observed as the capsule relaxes to its steady state. In other words, immediately after the corner the capsule oscillates
around its steady shape. This phenomenon is enhanced as the Capillary number increases. Additionally, we reported
that the relationship between the maximum surface area Amax of the capsule and the Reynolds number is linear as
long as the Capillary number is kept below 0.35. At Ca = 0.35, the relationship between Amax and Re is not perfectly
linear and the curve Amax(Re) is slightly concave. Moreover, from Re = 1 to Re = 50, the maximum surface area
increases nearly linearly over the full range of Ca. At Ca = 0.35, we compared the membrane stress to the capsule
surface area and found that (i) the time evolution of the average stress presents a strong correlation to that of the
membrane surface area, and (ii) in our configuration, the value of the maximum stress is double that of the average
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stress. As a result, observing the capsule surface area experimentally can provide reliable insight into the average
stress as well as an estimate of the capsule maximum stress. This finding is of primary importance in the design of
microfluidic devices where capsule breakup is to be avoided, as well as in the development of targeted drug delivery
methods for which a controlled capsule breakup is sought.

We then investigated the interaction of several capsules in the corner geometry. First, two capsules are considered
with varying initial interspacing distances. Similar to the case of a single capsule, neither the trajectory of the
leading nor of the trailing capsule is observed to significantly deviate from the flow streamlines. In the range of initial
interspacing distance considered, the velocity of the trailing capsule is found to be generally lower than that of the
leading capsule as well as that of a single capsule at the same Reynolds and Capillary numbers. Similarly, the velocity
of the leading capsule is greater than that of a single capsule in the same conditions. This velocity difference is also
visible in the time evolution of the interspacing distance d between the pair of capsules. In particular, we found
that capsules initially located at d0 ≤ 0.5 tend to separate. This suggests that there exists a minimum stable gap
dmin > 0.5 between two confined capsules. A systematic analysis of this effect is left for future studies. In contrast,
inside the corner the surface area of the trailing capsule is found to be larger than that of the leading capsule and
of the single capsule in the same conditions. However, in the configuration we consider where confinement is strong,
the magnitude of these effects is small even for capsules located very close to each other: the velocity of the leading
and trailing capsules only deviates by a few percents from that of a single capsule. Next, we examined the case of
a train of capsules and sought to determine whether the effects observed with a pair of capsule accumulate. While
no interaction occurs for a large initial interspacing distance d0 = 1, we found that in the case d0 = 1/8, the steady
and extremum surface areas of the trailing capsules increase by up to 5% and eventually saturate at the tail of the
train, around the ninth capsule. In all cases, the corner is found to separate the pair of capsules as well as the capsule
train, which can be further evidenced from the analysis of the time evolution of the capsule velocity inside the corner
region.

We believe that the present work is a step forward towards providing practical guidelines to avoid capsule breakup
in inertial and non-inertial microfluidic experiments. Future works could study capsule membranes exhibiting a strain-
hardening elastic behavior, e.g. as described by the Skalak law [45], as well as vary the confinement ratio β = 2ã/W̃ in
order to consider high-throughput microfluidic devices. In the case of lower confinement ratios in particular, we expect
to see stronger capsule interactions along with cross-stream capsule migration inside and downstream of the corner.
Finally, the present work could also be useful to develop membrane characterization techniques, where viscoelastic
membrane properties could be inferred from the time-dependant evolution of a capsule of interest through a corner.

Appendix A: Time evolution of capsule surface areas in the case of two interacting capsules

Figure 22 shows the evolution of the surface area of the leading and the trailing capsules in the non-inertial regime
(Fig. 22a), as well as at Re = 25 and Re = 50 where the initial interspacing d0 is 1 (Fig. 22b) and 0.25 (Fig. 22c).
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(a) Re = 0.01

(b) d0 = 1 (c) d0 = 0.25

FIG. 22: Temporal evolution of the reduced surface area A of the leading and the trailing capsules at various interspacings d0 and various
Capillary and Reynolds numbers Ca and Re.

Appendix B: Train of capsules at large initial interspacings

We provide in Fig. 23 the time evolution of the surface area and velocity of each capsule in a train of 10 capsules
flowing through a corner at Re = 50, Ca = 0.35 and a reduced initial interspacing distance between each capsule
d0 = 0.125. As can be noted in this figure, the capsules in this regime do not interact as the surface area and velocity
evolution of each capsule is almost identical.
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F. Edwards-Lévy, and A.-V. Salsac, “Characterization of the mechanical properties of cross-linked serum albumin mi-
crocapsules: effect of size and protein concentration,” Colloid and Polymer Science, vol. 294, no. 8, pp. 1381–1389, 2016.

[12] T. Lin, Z. Wang, R. Lu, W. Wang, and Y. Sui, “A high-throughput method to characterize membrane viscosity of flowing
microcapsules,” Physics of Fluids, vol. 33, no. 1, p. 011906, 2021.

[13] Z. Wang, R. Lu, W. Wang, F. Tian, J. Feng, and Y. Sui, “A computational model for the transit of a cancer cell through
a constricted microchannel,” Biomechanics and Modeling in Mechanobiology, pp. 1–15, 2023.

[14] Z. Zhu, D. Wu, S. Li, Y. Han, N. Xiang, C. Wang, and Z. Ni, “A polymer-film inertial microfluidic sorter fabricated by
jigsaw puzzle method for precise size-based cell separation,” Analytica Chimica Acta, vol. 1143, pp. 306–314, 2021.

[15] A. E. Green and J. E. Adkins, “Large elastic deformations and non-linear continuum mechanics,” 1960.
[16] D. Barthes-Biesel and J. Rallison, “The time-dependent deformation of a capsule freely suspended in a linear shear flow,”

Journal of Fluid Mechanics, vol. 113, pp. 251–267, 1981.
[17] C. Pozrikidis, “Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow,” Journal of Fluid

Mechanics, vol. 297, pp. 123–152, 1995.



24

[18] S. Ramanujan and C. Pozrikidis, “Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large
deformations and the effect of fluid viscosities,” Journal of fluid mechanics, vol. 361, pp. 117–143, 1998.

[19] C. Pozrikidis, “Effect of membrane bending stiffness on the deformation of capsules in simple shear flow,” Journal of Fluid
Mechanics, vol. 440, p. 269, 2001.

[20] C. Pozrikidis, “Numerical simulation of the flow-induced deformation of red blood cells,” Annals of biomedical engineering,
vol. 31, no. 10, pp. 1194–1205, 2003.

[21] H. Zhao, A. H. Isfahani, L. N. Olson, and J. B. Freund, “A spectral boundary integral method for flowing blood cells,”
Journal of Computational Physics, vol. 229, no. 10, pp. 3726–3744, 2010.
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