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Abstract

The smooth Distinct Element Method (DEM) is a numerical simulation technique used
in the study of granular materials. The applications are numerous in the industry and
in academia, especially in the life sciences field. Smooth DEM implies specifying inter-
particles contact forces that are involved during the explicit numerical integration of
the Newton’s laws of motion.

In this thesis, we implement a tangential contact force accounting for a memory
effect and leading to static behaviors that are known to show improved accordance
with experiments. However, the validation procedure was tainted by what is believed
to be the effect of an inaccurate rolling friction model.

Simultaneoulsy, a multi-step higher order scheme was implemented, allowing the
use of larger time steps at almost no additional computation cost. Validation of this
scheme was successful in some ideal cases, while the effect on error scaling of time
discretization itself is extensively discussed.
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Introduction

After water, granular matter is the most manipulated medium in the industry. Today,
the study of dry granular flows is of tremendous importance in the energy, pharmaceu-
tical, agri-food or recycling industries, and many more. If a fluid is considered around
the particles, the number of applications becomes even larger: from the fluidization
properties of geological soils to the heat carrying properties of particle-ladens flows in
solar farms facilities, to the numerous investigations in the field of life sciences with
the studies of blood flow and the drug-targetting promising breakthrough.

As it turns out, studying a large number of particles, even without considering a
surrounding fluid, is an N-body problem which analytical solution is not available
and which statistical analysis is only efficient in a very limited number of cases. Today,
granular media are studied using the Distinct Element Method (DEM) introduced by
Cundall and Strack in 1979 [1]. This method computes the time evolution of particles
by resolving each contact individually. Fourty years later, two methods of DEM coex-
ist. In the so-called stiff DEM, one computes the post-contact properties by solving an
implicit problem constrained by conservation laws [4]. This method leads to accurate
results but is limited by the size of the system: at most a few thousand particles can
be considered. In real life applications, far more particles are at play, and the use of
another method is often mandatory. Smooth DEM, however, is a much more scalable
approach, in which one computes the post-contact properties by explicitely solving the
Newton’s laws of motion at each time step. It implies being able to state and compute
the forces that arise during contacts, and to integrate them via a numerical scheme.

While there is an extensive number of studies on DEM for spherical particles and
some widely spread and validated codes such as LIGHHHTS [11], the vast majority
of applications of granular media involve non-spherical and sometimes non-convex
particles. GRAINS3D is one of the few codes that performs smooth DEM for particles of
arbitrary shape, in the framework of high-performance computing [12, 19, 20]. As we
shall see in this manuscript, DEM for non-spherical particles− sometimes shortened as
non-spherical DEM − requires much more implementation effort due to the increased
complexity of particle representations. As a result, there is a latancy in the advances in
the field of spherical DEM versus the field of non-spherical DEM.

The aim of this thesis is, on the one hand, to apply to non-spherical DEM a tangen-
tial damping force that leads to better static behavior. This so-called memory-friction
force has already become a standard in spherical DEM and must be implemented in
GRAINS3D. On the other hand, another goal of this thesis is to implement a numerical
integration method of order higher than two. Indeed having an integration scheme
that offers a better order accuracy than the currently implemented order two scheme
is an efficient way to reduce the computation time, because it allows the use of larger

1



2 LIST OF TABLES

time steps. Similarly, for the same computation time, a numerical scheme of higher
order achieves a better accuracy.

After a review of the main concepts relevant to non-spherical DEM in chapter
1, chapter 2 will be dedicated to the implementation of the memory friction force.
Then, we will present in chapter 3 the implementation of some higher order numeri-
cal schemes. In each of chapter 2 and 3, a strong emphasis will be put on the critical
analysis of the validation procedures and their results.



Chapter 1

Physics and modeling of granular dy-
namics

Granular matter can be defined as the clustering of a large number of discrete particles
which sizes range from a few micrometers − powders − to several meters or more
− rocks, asteroids, etc. Even in the case of powders, the size of the particles is large
enough so their motion is not affected by thermal motion fluctuations.
In the following section we will present how granular media can be described by the
Distinct Element Method (DEM) first initiated by Cundall and Strack [1]. It is this
method − more precisely the smooth-DEM − that is implemented in the computer
program GRAINS3D, which has been used and improved in this entire Master Thesis
project.

1.1 The Distinct Element Methods (DEM)

1.1.1 Eulerian and Lagrangian descriptions

In granular dynamics, on the one hand the granular medium presents behaviors that
are related to rigid body dynamics and referred to as the Lagrangian description of
the system - a single particle can be tracked and its movement can be described solely
with the Newton’s laws of motions. On the other hand, the medium also shows some
peculiar collective and fluid-like behaviors - for example, the medium presents particle
segregation or flows inside a recipient -, which motivates the vocabulary "granular
flow" and drives the adoption of an Eulerian frame of reference.
The DEM relies on a Lagrangian description. Particles are tracked individually and
their trajectories are fully resolved with the laws of motions.

1.1.2 Conduct of a DEM simulation

As presented in Fig. 1.1, the core of a DEM simulation is a loop over a discretized
time range. In a typical DEM simulation, each time step starts with a contact detection
sequence. It is a very computationally expensive step, that aims at listing the neighbors
of each particle. The details of the implementation of this step will be described further
in section 1.3.1.

3



4 CHAPTER 1. PHYSICS AND MODELING OF GRANULAR DYNAMICS

Figure 1.1: Schematic view of the con-
duct of a DEM simulation

After the contact detection phase, the next
step is to resolve the forces and torques act-
ing on each particle. This force computation
step is implemented in a subloop over all the
particles. Then, the equations of motion are
integrated for each particle via an integration
scheme. As discussed in section 1.4, there are
many integration schemes to choose from and
part of this thesis consists in implementing
schemes of order higher than two. When the
equations of motion are integrated individu-
ally for each particle, their positions and veloc-
ities are updated and time is incremented by
one time step. This whole process loops over
itself until reaching the end of the time range:
contact detection, forces and torques compu-
tation, integration of the equations of motion,
update of the positions and velocities.

It is important to note that in a typical
DEM simulation − including in our program
GRAINS3D −, space is not discretized. The co-
ordinates of the center of mass of the particles,
as well as their angular position, are computed
at each time step and can theoretically take any
real value.

1.2 Equations of motion

1.2.1 Laws of motion for 3D rigid bodies

As DEM is a Lagrangian description of the granular medium, each particle trajectory
is computed through the integration of the laws of motions for rigid bodies. For a
particle i, these equations are written as:

d
−→
Ui
dt

=

∑−→
Fi ,ext
mi

(1.1)

−→
Ui =

d−→ri
dt

(1.2)

dJi−→ωi
dt

=
∑−→
Mi,ext (1.3)

−→ωi =
d
−→
θi
dt

(1.4)

Where i is the index number of the particle, −→r is the position of its center of mass, m is
its mass,

−→
U is its velocity, J is its inertia tensor,

−→
θ is its angular position,−→ω is its angu-

lar velocity, and
−→
F ext and

−→
Mext are respectively the external forces and torques that act
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on it. In the above equations, all quantities are evaluated in the galilean frame of refer-
ence of the laboratory − often referred to as the world frame of reference. However, it
is useful to rewrite EQ (1.3) and EQ (1.4) in the frame of reference of the particle − or
body-frame of reference. In all the following, quantities in the body-frame of reference
will have the superscript b. Quantities without superscript will implicitely be consid-
ered in the world frame of reference. Moreover, if we take care to set the body-frame
of reference along the principal axis of inertia of the particle, the inertia tensor J b

i is
diagonal and EQ (1.3) and EQ (1.4) in the body-frame of reference are of the form:

J b
i

d−→ωi b

dt
+−→ωi b × J b

i
−→ωi b =

−→
Mi

b
,ext (1.5)

−→ωi b =
d
−→
θi
b

dt
(1.6)

To fully describe the system and have a well-posed problem, we now need to de-
scribe the forces and torques hidden in the terms

−→
F ext and

−→
Mext.

1.2.2 Contact modeling

Smooth DEM

Even though it is common in DEM to talk about rigid bodies, in most cases they are
actually not strictly rigid and small deformations are introduced during contact in or-
der to be able to integrate the laws of motion. We talk about smooth contact laws and by
extension smooth DEM.

Figure 1.2: Diagram showing the notations introduced during contacts between parti-
cles (exaggerated representation).

In smooth DEM, the shape of particles remains constant and the deformation is
modeled by a small penetration between particles. A very common contact model is
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the linear spring-dashpot model shown in FIG. 1.3. This model introduces a hookean
normal force as well as viscous normal and tangential frictions forces, with the classic
Coulomb saturation condition for the tangential total force:

∥∥∥−→Ft∥∥∥ ≤ µc

∥∥∥−→Fn∥∥∥. In the
following, the subscripts n and t respectively stand for "normal" and "tangential", −→n
denotes the unit vector normal to the contact defined with the two contact pointsA and
B, and

−→
t denotes the unit vector along the tangential velocity

−→
Ut, as shown in FIG. 1.2.

We also define the point C, middle point of the segment AB, where the contact forces
are applied.

The linear spring-dashpot model

Figure 1.3: The linear spring-dashpot contact model.

1. Normal forces

• Hookean force:
−→
Fn,Hooke = knδn

−→n ,
where kn is a normal stiffness constant, characteristic of the material and δn
is the penetration depth of the contact.

• Normal viscous dissipation:
−→
Fn,visq = −2γnmij

−→
Un,

wheremij and γn are constants of the particle material, and
−→
Un is the velocity

normal to the contact.

2. Tangential force:

The tangential viscous dissipation is expressed as
−→
Ft ,visq = −2γtmij

−→
Ut, and is saturated by the Coulomb friction criterion such that

the total tangential contact force is expressed as
−→
Ft ,tot = −min

(
µc

∥∥∥−→Fn,tot∥∥∥ ,∥∥∥−→Ft ,visq∥∥∥)−→t ,

with
−→
t oriented along the tangential velocity

−→
Ut.
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1.3 Computational implementation challenges

DEM programs such as GRAINS3D belong to the field of High Peformance Comput-
ing due to the high computational resources they require. To give an example, a typical
DEM code is designed to run on supercomputers such as CPU clusters ranging from
dozens to a thousand processors [19]. The most expensive step in DEM is by far the
contact detection phase, followed by the numerous frame transformations of the po-
sition and angular position of the particles. The implementations of both steps are
described below.

1.3.1 Contact resolution

The contact resolution phase − or contact detection phase − is the step of a DEM sim-
ulation where all the translational and rotational positions of the particles are scanned
to output a list of contact neighbors for each particle. As the contact point C, the pen-
etration depth δ, and the contact normal −→n will be needed during later stages of the
DEM simulation, the contact detection phase should also provide this information.

The contact detection phase loops over the particles and tests contacts via a binary
contact detection function. A naive approach would be that a particle i tests contact
with all other particles j 6= i, leading to a squared computational complexity. We can
do better than this implementation for two reasons: (i) because when we detect a con-
tact between particle i and particle j, we can keep the information that particle j has
particle i as a neighbor and therefore save one contact test; and (ii) because we know
that two particles located far away from each other will not be in contact. Taking ad-
vantage of (ii) leads to the implementation of a low expensive broad-phase detection
that outputs only the possibility that particle i and j are in contact. This broad-phase
detection is followed if appropriate by the more exepensive narrow-phase detection
that effectively tests contact between two particles. As we shall see below, we can
have several broad-phase detections in a row, each being narrower than the previous
one. The purpose of this cascade of broad-phase detections is to speed up the contact
resolution step by avoiding unnecessary calls to the narrow-phase detection. There-
fore, each broad-phase detection is by essence less computationally expensive than the
narrow-phase detection.

The usual way to implement the broad-phase detection is to discretize space in cells.
One particle will only test contacts with particles located near itself, i.e. in its own cell.
If the particle is located across an edge of its cell, it will test contacts with particles in
the neighboring cell as well. In FIG. 1.4, particles in the same cell are the same color.
Only particles of the same color will proceed to the next broad-phase detection. A pop-
ular one is the bounded-box method − sometimes referred to as AABB broad-phase
detection. In this method, a particle A tests narrow-phase detection with a particle B
only if the extrema coordinates of their vertices overlap. Let particle A (respectively,
particle B) be a polytope formed by vertices {Ai}i∈[1,NA] with Ai = (xAi

, yAi
, zAi

) (re-
spectively, {Bi}i∈[1,NB ] with Bi = (xBi

, yBi
, zBi

)). Then, the narrow-phase detection
between particle A and particle B is carried out only if the boxes BA and BB overlap,
with BA = {(x, y, z), x ∈ [(xA)min; (xA)max], y ∈ [(yA)min; (yA)max], z ∈ [(zA)min; (zA)max]}
and BB defined similarly.
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Figure 1.4: Two stages of broad-phase detection: space-discretization in cells and
bounding boxes. Particles with the same color will undergo the bounding boxes broad-
phase detection, and particles which bounded-boxes overlap will launch narrow-phase
detection.

Finally, the narrow-phase detection is what requires the most effort, both in terms
of computation and implementation. It would be an easy task if the considered par-
ticles were spheres, as the contact point, penetration depth, and contact normal can
be computed analytically with little effort. However, in our case particles are of arbi-
trary shapes like cubes, tetrahedra, or even non-convex shapes; which makes contact-
detection far less trivial. In fact, the first contact detection algorithm was proposed
only three decades ago by Gilbert, Johnson and Keerthi [2], and has later been im-
proved in a fast, efficient implementation by Van den Bergen in the late nineties [3, 6].
This so-called GJK algorithm has become a standard, and it is widely used in computer
graphics and DEM simulations [12, 20, 21, 15]. In the following, we shortly present the
principle of this contact detection algorithm.

As any non-convex shape can be decomposed into a set of glued convex bodies,
we can restrict our discussion to convex shapes only. The concepts of Minkowski dif-
ference, support mapping, and simplex are defined in APPENDIX. A. First, we note
that two convex shapes A and B are in contact if and only if their Minkowski differ-
ence C contains the origin. From this result, the aim of the contact detection algorithm
is to determine whether C includes the origin. The following GJK distance algorithm
ALG. 1 returns zero if the origin lies inside C, otherwise it returns the point from C that
lies closest to the origin. The first steps of the GJK algorithm are shown in FIG. 1.5. In
our case, C is the Minkowski difference of the two particles and its raw distance from
the origin presents little interest for us. It turns out Van den Bergen shows in the de-
scription of his famous implementation [3] that at each iteration, the algorithm solves
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Data: A convex body C with its support mapping function sC , a tolerance ε > 0

Find a vector v0 pointing towards C;
Compute the point w0 = sC(−v0);
SetW0 = ∅;
Set k = 1;
while k = 1 or ‖vk−1 − vk−2‖ is greater than ε do

Compute vk as the point of the simplexWk−1 ∪ wk−1 that lies closest to the
origin;

SetWk as the smallest subset ofWk−1 ∪ wk−1 that contains vk;
Compute wk = sC(−vk);
Set k = k + 1;

end
Result: wk, the point of C closest to the origin

Algorithm 1: The GJK distance algorithm

a linear system of size n ≤ 4. He then presents how to access the two closest points
A and B of the particles A and B, by cleverly reusing the coefficients that solved the
linear system in the last step.

The above GJK distance algorithm allows us to access the closest points of two
particles, and is relevant only if the two particles are not in contact. However, our
goal is to access the contact points of two overlapping particles. Therefore, once the
GJK distance algorithm has confirmed contact by returning the output zero, we need
additional computation to access these contact informations. The easiest way to do so
is to slightly shrink the two bodies so they are not in contact anymore, and to perform
the GJK algorithm again. As shown in FIG. 1.6, this second GJK algorithm iteration will
output the two closest points A and B of the shrinked particles, from which the two
contact points C and D and the contact normal can then be deduced. The penetration
depth is therefore the distance CD and the contact point is the middle point of the
segment CD. Another method is the Expanding Polytope Algorithm (EPA) [21], which
is about the same complexity as GJK as it involves solving linear systems.

1.3.2 Describing rotation: the use of quaternions

There are three common ways of representing angular position in space: Euler angles,
rotational matrices and quaternions. Euler angles can lead to dead-locks that prevent
their use in computer graphics, molecular dynamics and DEM. Rotational matrices are
often the option one is the most familiar with, but they present some redundancies
that are not acceptable in applications that require fast computation such as DEM or
computer graphics. In these fields, quaternions are a very powerful tool and we shall
briefly define them and present how to manipulate them.

Definition and basic operations

Quaternions were introduced by Sir Hamilton in 1843. He was seeking for an operation
in three dimensions that would generalize complex multiplication but he realized that
a fourth dimension had to be introduced. This quaternions introduction is largely
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(a) Initialization. k = 0,W0 = ∅ (b) Step 1. k = 1,W1 = {w0}

(c) Step 2. k = 2,W2 = {w0, w1} (d) Step 3. k = 3,W3 = {w0, w2}

Figure 1.5: The first interations of the GJK distance algorithm

inspired by the work of Yan-Bin [16]. In the following, vectors are printed in bold type
while quaternions and scalars remain in plain type.

A quaternion q is defined as the sum of a scalar q0 and a vector q = (q1, q2, q3). Let
i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1), we can write:

q = q0 + q1i + q2j + q3k = q0 + q (1.7)

From this definition we introduce the following operations:

• Addition: The quaternion addition is component-wise. If q and p are two quater-
nions, we define

p+ q = (p0 + q0) + (p1 + q1)i + (p2 + q2)j + (p3 + q3)k (1.8)

• Multiplication: The multiplication of quaternion has to follow the fundamental
rule introduced by Sir Hamilton:

i2 = j2 = k2 = ijk = −1

ij = k = −ji
jk = i = −kj
ki = j = −ik

(1.9)
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Figure 1.6: When two particles are colliding, the access of the contact information is
performed by a second iteration of the GJK algorithm on slighlty shrinked versions of
the particles.

In practice, it is more convenient to remember the result from the multiplication
of two quaternions p and q, where · is the inner product and× is the cross product
of two vectors:

pq = p0q0 − p · q + p0q + q0p + p× q (1.10)

We note that due to the cross product the multiplication of quaternions is not
commutative: pq 6= qp.

• Conjugate: By definition, the conjugate q? of a quaternion q is

q? = q0 − q (1.11)

and (pq)? = q?p?

• Norm: The norm |q| of the quaternion q is defined as

|q| =
√
q?q (1.12)

A quaternion which norm equals 1 is called a unit quaternion.

• Inverse: Let q−1 be the inverse of the quaternion q. We have

q−1 =
q?

|q|2
(1.13)

It is interesting to note that a unit quaternion’s inverse is its conjugate: q−1 = q?

if |q| = 1.
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Quaternion-based rotation operator

Let q = cos( θ
2
) + sin( θ

2
)u, with θ a scalar and u a unit vector. Then, the operator

Lq(v) := qvq? = (q2
0 − ‖q‖2)v + 2(q · v)q + 2q0q× v (1.14)

that acts on v is a rotation of an angle θ about the direction given by u. We also note
that Lq?(v) is the same rotation as Lq(v) with the angle −θ.

In the light of this rotation operator, we now have a routine to rotate a vector v in
space:

• Create a unit quaternion q = cos( θ
2
) + sin( θ

2
)u from the unit direction vector u of

the axis of rotation and the angle θ.

• Apply to v the rotation operator: v′ = Lq(v) = qvq?. The result v′ of this opera-
tion is the rotated vector.

1.4 Integration of the equations of motion

1.4.1 Desired characteristics of integration schemes

Once the forces and torques acting on each particle can be computed at each time step,
the motion equations EQ (1.1) and EQ (1.3) can be solved numerically. As emphasized
by Dziugys and Peters [5], in addition to meet the usual requirements of stability, low
memory storage and accuracy, a good integration scheme in DEM should compute as
few force evaluations per time step as possible, as it is a highly expensive computation.
Moreover, in DEM and in other Physics applications another desired characteristic of
integration schemes is the symplectic property. A symplectic integrator intrinsically
conserves the Hamiltonian of the system − in our case, the total energy of the particles
− when no dissipative forces are at play. In the following, we will present the most
common integration schemes in DEM. The reader seeking for an exhaustive list can
refer to [5] and [8].

1.4.2 Explicit time integration schemes in DEM

Integrating the translational motion equation

One-step schemes:

• Forward Euler {
x(t+ ∆t) = x(t) + U(t)∆t

U(t+ ∆t) = U(t) + a(t)∆t
(1.15)

The Forward Euler method, or just Euler method, is the simplest integration
scheme. It uses the first derivative of the considered function (the position x(t)

and the velocity U(t) in our case) to compute its value at the next time step. It is
a first order method and is therefore rarely used because of its lack of accuracy.
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• Taylor expansion {
x(t+ ∆t) = x(t) + U(t)∆t+ 1

2
a(t)∆t2

U(t+ ∆t) = U(t) + a(t)∆t
(1.16)

As the low order of accuracy of the Euler method is not satisfying, one can add
more derivatives to the Taylor expansion of the considered function. In the above
scheme EQ (1.16), the position x(t) is of second order while the velocity U(t) re-
mains of first order. One could design higher-order Taylor expansion schemes
like the below third order in position EQ (1.17), but the additional error intro-
duced by the approximation−with a finite difference scheme− of the derivative
of the acceleration da

dt
is unclear.{

x(t+ ∆t) = x(t) + U(t)∆t+ 1
2
a(t)∆t2 + 1

6
da
dt

∆t3

U(t+ ∆t) = U(t) + a(t)∆t+ 1
2
da
dt

∆t2
(1.17)

• Classic fourth order Runge-Kutta{
x(t+ ∆t) = x(t) + ∆t(kx1 + 2kx2 + 2kx3 + kx4)

U(t+ ∆t) = U(t) + ∆t(kU1 + 2kU2 + 2kU3 + kU4)
(1.18)

with


kx1 = U(t)

kx2 = U(t) + ∆t
2
kU1

kx3 = U(t) + ∆t
2
kU2

kx4 = U(t) + ∆tkU3

and


kU1 = a(t)

kU2 = a(t) + ∆t
2
kx1

kU3 = a(t) + ∆t
2
kx2

kU4 = a(t) + ∆tkx3

The very classic fourth order Runge-Kutta presents impressive accuracy and sta-
bility behavior [8], but at the price of four force evaluations per time step. Over-
all, it is an expensive scheme when applied to DEM and multi-step integrators
are often preferred. In fact, Kruggel-Emden et al. [8] show that in DEM, the use
of simple low order schemes (i.e. second or third order) with small time steps
shows better performance for an equivalent accuracy than the use of elaborated
higher order schemes with larger time steps. Therefore, the use of this fourth
order Runge-Kutta scheme is often restricted to the study of small systems.

Multi-step schemes:

• Leapfrog {
x(t+ ∆t) = x(t) + ∆tU(t+ ∆t

2
)

U(t+ ∆t
2

) = U(t− ∆t
2

) + a(t)∆t
(1.19)

This scheme is by far the most common in DEM, together with the following
Velocity Verlet integrator. It provides a second order accuracy for no additional
computation than the Euler algorithm. This is due to a shift by half a time step be-
tween the position and the velocity. Therefore to start the integration one needs
to compute U(t + ∆t

2
) from the initial condition U(0), which can safely be per-

fomed with a simple low order Forward Euler scheme. Moreover, the Leapfrog
scheme shows good stability, requires only one force evaluation per time step,
and is symplectic. A minor drawback is that the shifted velocity must be in-
terpolated in an expensive post-processing step if one wants to access its data:

U(t+ ∆t) =
U(t+

∆t
2

)+U(t−∆t
2

)

∆t
.
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• Velocity Verlet {
x(t+ ∆t) = x(t) + ∆tU(t+ ∆t) + ∆t

2
a(t)

U(t+ ∆t) = U(t) + ∆t
2

(a(t) + a(t+ ∆t))
(1.20)

One can modify the Leapfrog algorithm to synchronize the position and the ve-
locity in what is referred to as the Velocity Verlet algorithm, at the cost of storing
the acceleration a(t). As based on the Leapfrog scheme, the Velocity Verlet is
also of second order, shows good stability, is symplectic, and requires only one
force evaluation per time step. Note that this is not an implicit scheme, as long
as the acceleration does not depend on the velocity. Indeed, the common way of
computing the Velocity Verlet is the following:

1. Compute x(t+ ∆t)

2. Compute a(t+ ∆t) from x(t+ ∆t)

3. Compute U(t+ ∆t) from a(t+ ∆t) and the stored value of a(t)

• Second order Adams-Bashforth{
x(t+ ∆t) = x(t) + ∆t

2
(3U(t)− U(t−∆t))

U(t+ ∆t) = U(t) + ∆t
2

(3a(t)− a(t−∆t))
(1.21)

We should also mention this two-step second order Adams-Bashforth scheme,
which is a good candidate for DEM due to its low computation cost (only one
force evaluation per time step).

Predictor-correctors:
At last, it is possible to use an implicit algorithm and compute the uncomfortable im-
plicit terms with a lower order explicit scheme. Dviugys & Peters [5] and Kruggel-
Emden [8] present some examples, including the association of the implicit Adams-
Moulton with the explicit Adams-Bashforth, the third or fifth orders Gear predictor-
correctors and the fourth order Hermite predictor-corrector. It is a relatively inexpen-
sive way of reaching the high orders provided by implicit methods without having to
compute the expensive inversion of a system.

Integrating the rotational motion equation

The rotational motion is less straightforward to integrate than the translational motion.
Indeed, in EQ (1.5) the inertia tensor J depends on the orientation − embodied by
the quaterion q − which is the reason why non-spherical DEM is more expensive and
requires more efforts than spherical DEM. From EQ (1.5) the angular acceleration is
expressed as follows:

dωb

dt
=
(
J b
)−1 (Mb + J bωb × ωb

)
(1.22)

A particularly interesting approach to compute ωb while taking advantage of the quater-
nion representation has been developped by Zhao et al. [13] and further improved by
Seelen et al. [17]. Their Predictor-Corrector Direct Multiplication method (PCDM) in-
trinsically conserves the norm of the quaternions, which is required for quaternions to
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properly represent rotations. The details of the equations for the PCDM method are
well exposed in [13, 17], and there is little interest in rewriting them here. Below is a
summary of the main steps:

1. The angular position q and velocities ωb are predicted after half a time step − in
the case of the Leapfrog algorithm they are computed at t + ∆t from the previ-
ously known value at t+ ∆t

2
.

2. The torque resultantMb(t+∆t) is computed using the predicted angular position
and velocity.

3. With the new torque resultant and the predicted angular velocity, the angular
acceleration

(
dωb

dt

)
(t+ ∆t) can be computed using EQ (1.5).

4. Finally, the angular position and velocity are computed after the whole time step
from the angular acceleration

(
dωb

dt

)
(t + ∆t) and the predicted angular velocity

ωb(t+ ∆t) respectively.



Chapter 2

Implementation of an accurate static con-
tact force model

This section is dedicated to the implementation of a new tangential contact force in our
code GRAINS3D. We will show why this force is needed to better describe the dynam-
ics of a granular medium, then we will present the algebraic expression of this force
that stores information about the contact at previous time steps− hence its name mem-
ory-friction force or history-friction force −, we will later show how this force has been
implemented in the code GRAINS3D and we will present and discuss our validation
tests.

2.1 Motivations

2.1.1 Current range of validity

In section 1.2.2, we have presented the contact model that was implemented in GRAINS-
3D. In this model, the tangential force is a viscous friction proportional to the tangential
velocity Ut. This model has been experimentally validated numerous times for systems
which particles have a non-zero kinetic energy during the entire simulation, for exam-
ple in FIG. 2.1 from the work of Rakotonirina et al. [20]. However, when simulating
systems of particles with low kinetics energy such as packings, the code GRAINS3D
presents a porosity that slowly decreases with time, as shown in FIG. 2.2. This unphys-
ical behavior is very restricting because one has to make sure the problem is studied
on sufficiently short time scales such that this unphysical overpacking phenomenon is
neglectible.

This unphysical behavior can be intuited by the fact that when particles are packed
and have a kinetic energy close to zero, they experience no tangential friction as

−→
Ft ,visq =

−2γtmij

−→
Ut = 0. It means that on long time scales, particles have a small tangential ve-

locity that eventually overpacks the system. A solution would be to introduce a new
tangential friction force which does not depend on the velocity of the particles. In sec-
tion 2.2, we will present a force that is designed to meet this requirement, and that is
already a standard in DEM simulations. Bringing GRAINS3D to the state of the art
level of DEM codes by extending its validity to quasi-static and static systems is the
objective of this implementation.

16
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Figure 2.1: Validation experiment of GRAINS3D: dynamic simulation of non-convex
particles in a rotating drum [20]. The three graphs at the bottom show the experimen-
tal and numerical free surfaces at different times, and show a satisfying accordance
between experiments and simulation.
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(a) (b)

Figure 2.2: Numerical investigation of porosity versus time for the packing of 750
spheres, using our code GRAINS3D. On the plot (b), black dots are porosity values
for single randomly loaded simulations, while the red curve links the means of these
different porosity values. Parameters of the contacts are expressed in Table 2.1.

2.1.2 Methodology

In the following, we will use porosity analysis similar to the one in FIG. 2.2 to compare
our implementations. We shall briefly show here how a porosity analysis is conducted.

The way GRAINS3D post-treats data to compute porosity is the following. The user
enters the space region of interest (i.e. where there are particles) and the desired mesh
refinement. Then, space is meshed in cubic cells which size is significantly smaller than
the characteristic length of the particles − one can think of it as a 3D pixel. Each cell
is then considered "full" if it lies inside a particle, "empty" otherwise. Once every cell
has been labeled, the approximated porosity is the ratio of empty cells over the total
number of cells. In our case, the mesh refinement has been chosen to be such that one
cell size is 1

40th of the characteristic size of our particles − diameter for spheres. Indeed,
we have investigated that choosing a smaller cell size only impacts the porosity by less
than 0.001%. It is a very acceptable accuracy considering that the porosity range of our
analysis was over 5%.

Moreover, a porosity analysis can be tainted by an error due to a wall effect. As the
walls of the containers are flat, it affects the nearby packing of particles and porosity
in the vicinity of walls should not be considered. Indeed, close to the walls porosity is
not relevant as it can be too high (in the case of spheres against a wall) or too low (in
the case of cubes against a wall). Therefore, in all of our porosity analysis, the region
of interest − i.e. the region in which the porosity is computed − is chosen to be away
from the walls by one particle’s characteristic length − for spheres, one diameter.
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Finally, porosity experiments and simulations show variability with respect to the
loading process. In an attempt to limit its importance, each simulation is performed
several times with different loading configurations. Each loading is conducted ran-
domly in the sense that particles appear at the top of the domain with random initial
positions, providing they do not collide. For most cases, each simulation is perfomed
six times, but this number is reduced to three for the 20 seconds long simulation due
to high computation time (several days). In FIG. 2.2b, FIG. 2.5 and FIG. 2.6, each black
dot corresponds to the porosity computed from a single random loading of particles.
The red line connects the mean values of the black dots and is a more reliable way to
analyze the behavior of porosity.

2.2 A new tangential friction force

Figure 2.3: The contact model for the tangential force with memory effect.

In order to keep a non-zero friction force, we introduce a Hookean force which
coefficient is proportional to the cumulative displacement

−−→
δ(t) =

∫ t
tcontact

−−−→
Ut(s)ds. It is

important to note that the cumulative displacement δ(t) is not related to the penetration
depth δ. Still, we keep this unfortunate notation choice as it is commonly used in the
literature. Then, we define the new tangential Hookean force as follows:

−→
Ft =

−→
Ft ,visq +

−→
Ft ,mem with

−→
Ft ,mem = kt

−−→
δ(t) = kt

∫ t

tcontact

−−−→
Ut(s)ds (2.1)

From the expression of
−→
Ft ,mem we understand its name memory-friction force, as it

is proportional to the cumulative displacement
−−→
δ(t). Even though the memory-friction

force may seem artificial, it turns out it tackles the problem of zero friction when par-
ticles have small velocities. It has therefore been widely adopted by the DEM commu-
nity and has become a standard [18, 21, 5, 14].
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2.3 Implementation

The memory-friction force supposes each particle keeps track of its neighbors and of
the cumulative displacement

−−→
δ(t). This has been implemented with a key-value struc-

ture, using the C++ standard library std::map object.
A key-value structure allows the storage of data that can be uniquely accessed by a

key. It follows the principle of a dictionnary : the user accesses a definition (i.e. the data
or the value) using the word corresponding to the definition (i.e. the key). In our case,
each particle stores an std::map object where the keys are the identification numbers
− or ids − of its neighbors, and the values are the corresponding contact information
(i.e. the cumulative tangential displacements). This is graphically shown in FIG. 2.4.

We note that this implementation is not memory-efficient as the cumulative tan-
gential displacement is stored twice: once in each particle’s map structure. However,
in DEM the challenge is about computation rather than storage. In fact, our code
GRAINS3D does not suffer from storage issues, so the use of non memory-efficient
data structures is allowed as long as they offer low computation costs.

Figure 2.4: Diagram of the use of the C++ object std::map implementing the storage
of contact information between two particles i and j. The keys of particle i (resp. parti-
cle j) are its neighbors’ identification number while the values associated with the keys
are the contact information to store.

2.4 Validation

2.4.1 Validation on porosity experiments

As a validation procedure, we use porosity experiments previously presented in sec-
tion 2.1.2. We consider that our implementation is validated if the porosity decay with
time is largely reduced. As we will see later, there are probably better ways to assess
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the validity of our implementation, but we will discuss this issue further in section
2.4.2.

Investigating the tangential hookean coefficient

The input parameters of our simulations are chosen to be the same as previous numer-
ical experiments conducted by Wachs et al. [12], and are summarized in Table 2.1. The
only parameter that is missing is the tangential hookean coefficient kt of the new tan-
gential force. Before conducting our porosity versus time numerical experiment, we
shall investigate the value of kt.

Table 2.1: Parameters of the spherical particles used to conduct numerical porosity
analysis.

Parameter Value
Radius (m) 1 · 10−3

kn (N ·m−1) 4 · 105

γn (s−1) 2.623 · 103

µc (no unit) 0.5

γt (s−1) 1 · 105

To do so, we analyze the porosity of a packing of spheres on a wide range of values
for kt − from 101 to 107 N·m−1. As porosity increases with inter-particle friction, con-
sidering the effect of kt on porosity is a way to consider the effect of kt on the effective
friction felt by the particles. As we can see in FIG. 2.5, the porosity increases somewhat
like a sigmoid and reaches a plateau for values of kt greater than 105 N·m−1. Keep-
ing in mind that the physical tangential friction is the Coulomb friction, and that all
of the contact models of smooth DEM are only introduced for numerical stability, the
value of kt should be chosen so that the Coulomb friction − achieved by high tangen-
tial friction − is reached easily. Therefore, we need to choose a large value for kt, but
a value unreasonably large would lead to numerical instabilities. A trade-off is to take
the lowest value of kt that achieves a high effective friction for the particles, that is to
say that maximizes the porosity in FIG. 2.5. In the following, the value chosen for the
tangential hookean coefficient kt is 105 N·m−1.

Validation with porosity versus time profiles

With the value of kt now determined, we can proceed to the porosity versus time nu-
merical experiments. The results are shown in FIG. 2.6. If we compare this result to
the one obtained without the memory-friction force in FIG. 2.2, the behavior is rather
disappointing as the new friction force does not lower the porosity decay.

2.4.2 Discussion

With the numerical results of FIG. 2.6, we need to understand why implementing this
memory-friction force has not improved the accuracy of our porosity simulations. It
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Figure 2.5: Porosity of the packing of 750 spheres with respect to the tangential
hookean coefficient kt. Parameters of the contacts are expressed in Table 2.1, except
for γt which was taken equal to zero. Simulation time is 1.0 s.

turns out that the tangential contact force
−→
Ft is not the only variable at play in this

decay of porosity. In fact, Ai et al. [9] investigate the effect of various rolling friction
models for spherical DEM. They show that even with this memory friction force we
have implemented in GRAINS3D, some commonly used rolling friction models lead
to a small residual kinetic energy that tends to make the granular medium vibrate. It
is well known that a way to pack a granular medium is to make it undergo vibrations.
FIG. 2.7a shows that the rolling friction model implemented in GRAINS3D − referred
to as the directional constant torque model (model A) in Ai’s work− leads to these un-
physical and unwanted vibrations, eventually leading to an overpacking of the system
as shown in FIG. 2.7b.

To the best of our knowledge, there is no test that would validate our implementa-
tion through a macroscopic property such as porosity, without being tainted by other
variables at play such as the rolling friction force. Therefore, in the light of the work of
Ai et al. [9], validating our implementation through porosity analysis would require to
implement a new, more accurate rolling friction model for GRAINS3D. This would go
beyond the scope of this project, but it will have to be done in the near future in order
to allow the use of the newly implemented memory-friction force in GRAINS3D. How-
ever, for this project we would also like to focus on numerical integration for DEM.
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Figure 2.6: Porosity of the packing of 750 spheres with respect to time, with the contri-
bution of the new tangential hookean force. Parameters of the contacts are expressed
in Table 2.1, and kt is taken equal to 105 N·m−1.
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(a)

(b)

Figure 2.7: The effect on rolling friction models on the residual kinetic energy and the
packing of the system. Figures from Ai et al [9].



Chapter 3

Higher order integration schemes

In this chapter, we investigate the implementation of higher order schemes in DEM.
We choose an Adams-Bashforth scheme of third order, coupled with a second-order
Runge-Kutta for the first steps. We shortly present the new schemes and motivations
for a first Python implementation in section 3.1. Then, we conduct validation simula-
tions in section 3.2 and investigate the error scaling with respect to analytical solutions
for the position and the restitution coefficient respectively. As we shall see, for some
tests the error scaling is not what one would expect for a third-order scheme. Section
3.3 is dedicated to discuss these results and to show they come from theoretical matters
rather than implementation ones.

3.1 Considered schemes and implementation

3.1.1 Considered integration schemes

The third-order Adams-Bashforth scheme is the following:{
x(t+ ∆t) = x(t) + ∆t

12
(23U(t)− 16U(t−∆t) + 5U(t− 2∆t))

U(t+ ∆t) = U(t) + ∆t
12

(23a(t)− 16a(t−∆t) + 5a(t− 2∆t))
(3.1)

As a three-step algorithm, the first two steps need to be computed by another one-step
scheme. For this purpose, we implement a second-order Runge-Kutta scheme.

3.1.2 Implementation with a high-level language

In large low-level programming projects, if possible it is often a good idea to imple-
ment new features in a different, smaller project programmed with a high-level lan-
guage such as Python, Matlab or Octave. It gives flexibility to the programmer to test
the initial implementation and apply corrections if necessary, before putting time and
effort in implementing the definitive feature in the main code.

In our case, as we shall see in section 3.2, the numerical scheme validation re-
quires only one spherical particle hitting a wall. Therefore, it becomes very easy to
program our own high-level language DEM code, specifically designed to try different
numerical schemes. In the following, the schemes are programmed using the language
Python. For data computed from GRAINS3D, see APPENDIX. C.

25
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3.2 Validation

3.2.1 Position error

Figure 3.1: Schematic
view of the validation
simulation: a single par-
ticle hits a plane, and the
error on δ is analysed.

Our validation test consists of the computation of the im-
pact of a single spherical particle hitting a wall at a constant
speed, with no gravity. First, we will compare the position
of the sphere of the simulated solution to the analytical so-
lution. In other words, we compare the computed penetra-
tion depth to an analytical solution δ, which derivation is
shown below.

Analytical solution

To derive the penetration depth δ, we solve the Newton’s
laws of motions during contact. Only the normal forces are
to be considered, that is:

•
−→
Fn,Hooke = −knδ−→ez

•
−→
Fn,visq = −2γnM

−→
U = −2γnM

dδ
dt
−→ez

with kn the material stiffness, γn the normal viscous factor,
M the mass of the particle,

−→
U its velocity and −→ez the unit

vector in the vertical (and normal) direction − see FIG. 3.1.
Applying Newton’s laws of motion along −→ez gives us:

d2δ

dt2
+ 2γn

dδ

dt
+ ω2

0δ = 0, with ω0 =

√
kn
M

(3.2)

and the analytical value δ of the penetration depth is therefore:

δ(t) =
U0

ω
e−γn(t−tc) sin (ω(t− tc)) (3.3)

with tc the time of the beginning of the contact, U0 the initial velocity norm ‖
−→
U (t ≤ tc)‖

and ω =
√
ω2

0 − γ2
n.

Results

The scaling of our third-order Adams-Bashforth scheme with respect to the position
error is shown in FIG. 3.2. Two test-cases are considered: (i) at t = 0 the particle al-
ready touches the wall and is about to penetrate into it with the initial velocity

−→
U , and

(ii) at t = 0 the particle is slightly above the wall − by 10−7m to compare with the
particle’s radius of 10−3m − and is about to hit the plane with the same velocity

−→
U .

We observe in FIG. 3.2a that the first case leads to the expected third order scaling: the
error of the computed position with respect to the analytical position decreases with
∆t3. However, if the sphere does not start on the wall but slightly above, FIG. 3.2b
shows an error behavior that is somewhat similar to a noisy first order.
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(a) Initial position on the plane

(b) Initial position above the plane

Figure 3.2: Position error scaling of a third order Adams-Bashforth scheme for the
rebound problem, with the particle starting on the surface of the plane (a), and above
the surface of the plane (b).
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APPENDIX. B presents similar results for a variety of other schemes, among them
the second-order Adams-Bashforth scheme and the fourth-order Runge-Kutta. This
unexpected order decline will be discussed in section 3.3. APPENDIX. C presents the
results for a position error test similar to the one on FIG. 3.2a, computed from our
code GRAINS3D with the newly implemented third order Adams-Bashforth scheme,
initiated by the second order Runge-Kutta scheme.

3.2.2 Restitution coefficient error

With the same case test of a sphere hitting a wall in a no-gravity environment, we can
also consider the error on other variables than position. For example, the restitution
coefficient is particularly easy to analyze as it is simply the ratio of the post-impact
velocity Uf over the initial velocity U0. However, with the error on the restitution
coefficient none of the cases where (i) the sphere starts on the wall and (ii) the sphere
starts above the wall show a third order error scaling. In FIG. 3.3 we see that they both
lead to a noisy first-order tendancy. The results for the same test case applied to other
numerical schemes can be found in APPENDIX. B.

3.3 Discussion

The above error scalings were not expected and are quite uncomfortable because they
involve an order degeneration which seems to be case- and error type-specific. As
our numerical schemes lead to expected performances in some cases − in the case
where there is contact at t = 0 for the position error − it clearly does not come from
implementation mistakes for all of the schemes tested. In this section we explain why
we find a first order tendancy in some configurations and for some errors, and we
compare the performances to other DEM methods.

3.3.1 A time discretization inherent error

It turns out that this order degeneration is intrinsically linked to the smooth DEM
method, and is unfortunately poorly documented in the literature. Kruggel-Emden
briefly mentions it in his performance review of integrators for DEM [8], but does not
specify the order depreciations that it can induce.

When a collision occurs, there is an error that is linked to the detection latency of
the contact. As shown in FIG. 3.4, when the position of a particle A is updated during
free-fall and when its new position implies a contact with a wall or another particle,
during the intermediate time tcontact and the next time step t + ∆t particle A does not
feel the effects of its contact with the obstacle. As a result, at the next time step t + ∆t

its penetration depth and velocity are higher than if the contact was to be detected and
taken into account exactly at tcontact. The results obtained previously show that this
time-step induced error is of order one and dominates the integration error. The noise
observed in FIG. 3.2 and FIG. 3.3 is due to the fact that this time-step error depends on
the latency of the contact detection. Indeed, sometimes the time discretization leads to
a very low latency −when t+ ∆t is exactly on or right after the analytical contact time
tcontact −, involving a groove in the error scaling profile; while sometimes the latency is
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(a) Initial position on the wall

(b) Initial position above the wall

Figure 3.3: Velocity error scaling of a third order Adams-Bashforth scheme for the
rebound problem, with the particle starting on the surface of the wall (a), and above
the surface of the wall (b).
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Figure 3.4: Schematic view of the time-discretization induced error during contact de-
tection.

high −when the contact detection time t+ ∆t is further away from tcontact −, involving
a bump on the curve. The reason why neither FIG. 3.3a nor FIG. 3.3b show a third order
accuracy is that in both cases the final velocity Uf is tainted by this detection error, that
occurs at the end of the contact. The post-contact free fall is detected too late and leads
to an error on Uf , tainting the restitution coefficient en =

Uf

U0
with an error. This is also

the case in FIG. 3.3a even with an exact value of U0.
A way to validate this explanation would be to fit the analytical solution δ in EQ (3.3)

so that it matches the particle’s position and velocity at the time the contact is detected.
That is, if U0 and tc in EQ (3.3) are chosen to lead to an accordance between the ana-
lytical solution δ (resp. dδ

dt
) and the particle’s position (resp. velocity) at the time of

the contact detection; does it lead to an error scaling of the expected order? FIG. 3.5b
shows that it is the case for a second order Runge-Kutta scheme.

Interestingly, the error scaling is still of order one in the case of a second order
Adams-Bashforth. In fact, APPENDIX. B presents the data from other schemes, and we
find all one-step schemes show error scalings of the expected orders, while multi-step
schemes do not. Indeed, while one-step algorithms "forget" the data from the previous
times, multi-steps algorithms re-use it. However, in this case of a fitted analytical so-
lution, the position and velocities at the step previous to the contact are not consistent
with the position and velocity’s values after the contact. When multi-step algorithms
use this inconsistent data, it leads to a first order error that propagates to further time
steps and decreases the global order of the scheme.

3.3.2 Achieving a global high order in DEM?

In the light of the time discretization inherent error that has just been described, it is
legitimate to ask if a DEM simulation can be of high order at all. In fact, very few error
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versus time step curves can be found in the literature. One could think of abandon-
ning the soft sphere model for the hard-sphere model [4], but this latter model cannot
achieve large amounts of particles, which makes it unapplicable to the typically large
systems simulated by the smooth DEM community.

A promising approach has been recently proposed by Kempe & Fröhlich [10]. Al-
though their study is focused on collision of spheres in fluids, their Adaptative Colli-
sion Time Model (ATCM) is applicable for dry collisions. In this model, the stiffness
and damping coefficients are no longer material constants but are computed for each
collision using an optimization procedure, so that the rebound velocity and the colli-
sion time match the physical expectations. Their comparisons on experimental data
from Gondret et al. [7] look very encouraging. Implementing it in GRAINS3D is be-
yond the scope of this project, but is to be considered in the future.



32 CHAPTER 3. HIGHER ORDER INTEGRATION SCHEMES

(a) Second order Adams-Bashforth (two-step scheme)

(b) Second order Runge-Kutta (one step scheme)

Figure 3.5: Position error scaling of a second order Adams-Bashforth scheme (a) and
a second order Runge Kutta scheme (b) for the rebound problem, with the particle
starting above the surface of the wall and the analytical solution being fitted to match
the particle’s position and velocity at the instant the contact is detected.



Conclusion

A new contact force model was implemented in the DEM code GRAINS3D, as well as
a third order Adams-Bashforth integration scheme. On the one hand, validation for
the contact force model was not successful due to another phenomenon altering the
validation tests. A more accurate rolling friction model should allow the validation of
the implemented contact force model, and is to be carried out in the near future.

On the other hand, validation tests of the Adams-Bashforth integration scheme
show a third-order behavior when the position is compared to the analytical solution
during contact, as expected. However, an interesting behavior has been identified for
all integration schemes. It occurs at the interface between the free fall and the contact
problems. It is believed to be due to an error inherent to the time discretization, and
was confirmed by the different behavior of one-step and multi-step algorithms in the
case of an analytical solution fitting.

For furthur interests, methods to bypass the order decrease can be investigated,
such as the Adaptative Collision Time Model. A focus point can be put on the com-
putational performances of the code in order to keep up with the fast moving field of
computer science. The most crucial aspects are probably the implementation of a dy-
namic load balancing and a hybrid OpenMP-MPI architecture. Finally, once the contact
model has been validated in dry conditions, validation tests can be carried out for par-
ticles immersed in a fluid. Such particle-laden flows have tremendous applications in
many industries and in academia.
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Appendix A

Key concepts for the GJK distance al-
gorithm

Minkowski sum

The Minkowski sum is an operation on vector sets. A and B being two sets of vectors
their Minkowski sum A⊕B is defined as:

A⊕B := {a + b, a ∈ A and b ∈ B} (A.1)

Similarly, A	 B := {a− b, a ∈ A and b ∈ B}. Geometric result of Minkowski oper-
ations are shown below in FIG. A.1:

(a) Minkowski sum (b) Minkowski difference

Figure A.1: Geometric example of Minkowski operations

Support mapping

The support mapping − or support function − fC of a convex set C is defined as

fC(x) := sup {x · c, c ∈ C} (A.2)

and is illustrated in FIG. A.2
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Figure A.2: Geometric example of a support mapping function

Simplex

A k-simplex Sk is the convex hull of a set of k vertices {vi}1≤i≤k:

Sk =

{
k∑
i=0

aivi, with
k∑
i=0

ai = 1

}
(A.3)

In the GJK distance algorithm, only simplices up to four vertices are considered, that
is: a point, a segment, a triangle and a tetrahedron.
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Order scaling for other numerical schemes
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(a) Initial position on the wall

(b) Initial position above the wall

Figure B.1: Restitution coefficient error scaling of a second order Runge-Kutta scheme
for the rebound problem, with the particle starting on the surface of the wall (a), and
above the surface of the wall (b).
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(a) Initial position on the wall

(b) Initial position above the wall

Figure B.2: Restitution coefficient error scaling of a fourth order Runge-Kutta scheme
for the rebound problem, with the particle starting on the surface of the wall (a), and
above the surface of the wall (b).
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(a) Initial position on the wall

(b) Initial position above the wall

Figure B.3: Restitution coefficient error scaling of a second order Adams-Bashforth
scheme for the rebound problem, with the particle starting on the surface of the wall
(a), and above the surface of the wall (b).
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GRAINS3D

(a) Second order Runge-Kutta

(b) Third order Adams-Bashforth

Figure C.1: Position error scaling during contact for the second order Runge-Kutta
scheme (a) and the third order Adams-Bashforth scheme (b). The contact already ex-
ists at t=0 (the penetration depth at t=0 is 10−6m). The plateau around 10−11m is not
scheme-related, but is due to the precision storage of values in text files by the code
Grains3D. The schemes (a) and (b) are therefore true second and third order schemes
respectively.


